On groups of automorphisms of nilpotent $p$-groups of finite rank
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1161-1165
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\alpha $ and $\beta $ be automorphisms of a nilpotent $p$-group $G$ of finite rank. Suppose that $\langle (\alpha \beta (g))(\beta \alpha (g))^{-1}\colon g\in G\rangle $ is a finite cyclic subgroup of $G$, then, exclusively, one of the following statements holds for $G$ and $\Gamma $, where $\Gamma $ is the group generated by $\alpha $ and $\beta $. \item {(i)} $G$ is finite, then $\Gamma $ is an extension of a $p$-group by an abelian group. \item {(ii)} $G$ is infinite, then $\Gamma $ is soluble and abelian-by-finite.
Let $\alpha $ and $\beta $ be automorphisms of a nilpotent $p$-group $G$ of finite rank. Suppose that $\langle (\alpha \beta (g))(\beta \alpha (g))^{-1}\colon g\in G\rangle $ is a finite cyclic subgroup of $G$, then, exclusively, one of the following statements holds for $G$ and $\Gamma $, where $\Gamma $ is the group generated by $\alpha $ and $\beta $. \item {(i)} $G$ is finite, then $\Gamma $ is an extension of a $p$-group by an abelian group. \item {(ii)} $G$ is infinite, then $\Gamma $ is soluble and abelian-by-finite.
DOI : 10.21136/CMJ.2020.0262-19
Classification : 20F18, 20F28
Keywords: automorphism; nilpotent group; finite rank
@article{10_21136_CMJ_2020_0262_19,
     author = {Xu, Tao and Liu, Heguo},
     title = {On groups of automorphisms of nilpotent $p$-groups of finite rank},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1161--1165},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0262-19},
     mrnumber = {4181804},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0262-19/}
}
TY  - JOUR
AU  - Xu, Tao
AU  - Liu, Heguo
TI  - On groups of automorphisms of nilpotent $p$-groups of finite rank
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1161
EP  - 1165
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0262-19/
DO  - 10.21136/CMJ.2020.0262-19
LA  - en
ID  - 10_21136_CMJ_2020_0262_19
ER  - 
%0 Journal Article
%A Xu, Tao
%A Liu, Heguo
%T On groups of automorphisms of nilpotent $p$-groups of finite rank
%J Czechoslovak Mathematical Journal
%D 2020
%P 1161-1165
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0262-19/
%R 10.21136/CMJ.2020.0262-19
%G en
%F 10_21136_CMJ_2020_0262_19
Xu, Tao; Liu, Heguo. On groups of automorphisms of nilpotent $p$-groups of finite rank. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1161-1165. doi: 10.21136/CMJ.2020.0262-19

[1] Dardano, U., Eick, B., Menth, M.: On groups of automorphisms of residually finite groups. J. Algebra 231 (2000), 561-573. | DOI | MR | JFM

[2] Guralnick, R. M.: A note on pairs of matrices with rank one commutator. Linear Multilinear Algebra 8 (1979), 97-99. | DOI | MR | JFM

[3] Liu, H. G., Zhang, J. P.: On $p$-automorphisms of a nilpotent $p$-group with finite rank. Acta Math. Sin., Chin. Ser. 50 (2007), 11-16 Chinese. | MR | JFM

[4] Robinson, D. J. S.: Residual properties of some classes of infinite soluble groups. Proc. Lond. Math. Soc., III. Ser. 18 (1968), 495-520. | DOI | MR | JFM

[5] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 2. Ergebnisse der Mathematik und ihrer Grenzgebiete 63, Springer, Berlin (1972). | DOI | MR | JFM

[6] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1982). | DOI | MR | JFM

[7] Segal, D.: Polycyclic Groups. Cambridge Tracts in Mathematics 82, Cambridge University Press, Cambridge (1983). | DOI | MR | JFM

[8] Wehrfritz, B. A. F.: Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices. Ergebnisse der Mathematik und ihrer Grenzgebiete 76, Springer, Berlin (1973). | DOI | MR | JFM

Cité par Sources :