On groups of automorphisms of nilpotent $p$-groups of finite rank
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1161-1165
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\alpha $ and $\beta $ be automorphisms of a nilpotent $p$-group $G$ of finite rank. Suppose that $\langle (\alpha \beta (g))(\beta \alpha (g))^{-1}\colon g\in G\rangle $ is a finite cyclic subgroup of $G$, then, exclusively, one of the following statements holds for $G$ and $\Gamma $, where $\Gamma $ is the group generated by $\alpha $ and $\beta $. \item {(i)} $G$ is finite, then $\Gamma $ is an extension of a $p$-group by an abelian group. \item {(ii)} $G$ is infinite, then $\Gamma $ is soluble and abelian-by-finite.
DOI :
10.21136/CMJ.2020.0262-19
Classification :
20F18, 20F28
Keywords: automorphism; nilpotent group; finite rank
Keywords: automorphism; nilpotent group; finite rank
@article{10_21136_CMJ_2020_0262_19,
author = {Xu, Tao and Liu, Heguo},
title = {On groups of automorphisms of nilpotent $p$-groups of finite rank},
journal = {Czechoslovak Mathematical Journal},
pages = {1161--1165},
publisher = {mathdoc},
volume = {70},
number = {4},
year = {2020},
doi = {10.21136/CMJ.2020.0262-19},
mrnumber = {4181804},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0262-19/}
}
TY - JOUR AU - Xu, Tao AU - Liu, Heguo TI - On groups of automorphisms of nilpotent $p$-groups of finite rank JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1161 EP - 1165 VL - 70 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0262-19/ DO - 10.21136/CMJ.2020.0262-19 LA - en ID - 10_21136_CMJ_2020_0262_19 ER -
%0 Journal Article %A Xu, Tao %A Liu, Heguo %T On groups of automorphisms of nilpotent $p$-groups of finite rank %J Czechoslovak Mathematical Journal %D 2020 %P 1161-1165 %V 70 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0262-19/ %R 10.21136/CMJ.2020.0262-19 %G en %F 10_21136_CMJ_2020_0262_19
Xu, Tao; Liu, Heguo. On groups of automorphisms of nilpotent $p$-groups of finite rank. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1161-1165. doi: 10.21136/CMJ.2020.0262-19
Cité par Sources :