On generalized Douglas-Weyl Randers metrics
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 155-172
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics.
We characterize generalized Douglas-Weyl Randers metrics in terms of their Zermelo navigation data. Then, we study the Randers metrics induced by some important classes of almost contact metrics. Furthermore, we construct a family of generalized Douglas-Weyl Randers metrics which are not $R$-quadratic. We show that the Randers metric induced by a Kenmotsu manifold is a Douglas metric which is not of isotropic $S$-curvature. We show that the Randers metric induced by a Kenmotsu or Sasakian manifold is not Einsteinian. By using $D$-homothetic deformation of a Kenmotsu or Sasakian manifold, we construct a family of generalized Douglas-Weyl Randers metrics and show that the Lie group of projective transformations does not act transitively on the set of generalized Douglas-Weyl Randers metrics.
DOI : 10.21136/CMJ.2020.0241-19
Classification : 53B40, 53C60
Keywords: generalized Douglas-Weyl metric; Randers metric; Kenmotsu manifold; Sasakian manifold
@article{10_21136_CMJ_2020_0241_19,
     author = {Tabatabaeifar, Tayebeh and Najafi, Behzad and Rafie-Rad, Mehdi},
     title = {On generalized {Douglas-Weyl} {Randers} metrics},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--172},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0241-19},
     mrnumber = {4226475},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0241-19/}
}
TY  - JOUR
AU  - Tabatabaeifar, Tayebeh
AU  - Najafi, Behzad
AU  - Rafie-Rad, Mehdi
TI  - On generalized Douglas-Weyl Randers metrics
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 155
EP  - 172
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0241-19/
DO  - 10.21136/CMJ.2020.0241-19
LA  - en
ID  - 10_21136_CMJ_2020_0241_19
ER  - 
%0 Journal Article
%A Tabatabaeifar, Tayebeh
%A Najafi, Behzad
%A Rafie-Rad, Mehdi
%T On generalized Douglas-Weyl Randers metrics
%J Czechoslovak Mathematical Journal
%D 2021
%P 155-172
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0241-19/
%R 10.21136/CMJ.2020.0241-19
%G en
%F 10_21136_CMJ_2020_0241_19
Tabatabaeifar, Tayebeh; Najafi, Behzad; Rafie-Rad, Mehdi. On generalized Douglas-Weyl Randers metrics. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 155-172. doi: 10.21136/CMJ.2020.0241-19

[1] Bácsó, S., Papp, I.: A note on a generalized Douglas space. Period. Math. Hung. 48 (2004), 181-184. | DOI | MR | JFM

[2] Bao, D., Robles, C.: Ricci and flag curvatures in Finsler geometry. A Sampler of Riemann-Finsler Geometry Mathematical Sciences Research Institute Publications 50. Cambridge University Press, Cambridge (2004), 197-259. | MR | JFM

[3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203. Birkhäuser, Basel (2010). | DOI | MR | JFM

[4] Cheng, X., Shen, Z.: Finsler Geometry: An Approach Via Randers Spaces. Springer, Berlin (2012). | DOI | MR | JFM

[5] Emamian, M. H., Tayebi, A.: Generalized Douglas-Weyl Finsler metrics. Iran. J. Math. Sci. Inform. 10 (2015), 67-75. | MR | JFM

[6] Hall, G.: On the converse of Weyl's conformal and projective theorems. Publ. Inst. Math., Nouv. Sér. 94 (2013), 55-65. | DOI | MR | JFM

[7] Hasegawa, I., Sabau, V. S., Shimada, H.: Randers spaces of constant flag curvature induced by almost contact metric structures. Hokkaido Math. J. 33 (2004), 215-232. | DOI | MR | JFM

[8] Li, B., Shen, Z.: On Randers metrics of quadratic Riemann curvature. Int. J. Math. 20 (2009), 369-376. | DOI | MR | JFM

[9] Milkovszki, T., Muzsnay, Z.: On the projective Finsler metrizability and the integrability of Rapcsák equation. Czech. Math. J. 67 (2017), 469-495. | DOI | MR | JFM

[10] Nagaraja, H. G., Kumar, D. L. Kiran, Prasad, V. S.: Ricci solitons on Kenmotsu manifolds under $D$-homothetic deformation. Khayyam J. Math. 4 (2018), 102-109. | DOI | MR | JFM

[11] Najafi, B., Bidabad, B., Tayebi, A.: On $R$-quadratic Finsler metrics. Iran. J. Sci. Technol., Trans. A, Sci. 4 (2007), 439-443. | MR | JFM

[12] Najafi, B., Shen, Z., Tayebi, A.: On a projective class of Finsler metrics. Publ. Math. 70 (2007), 211-219. | MR | JFM

[13] Najafi, B., Tayebi, A.: Some curvature properties of $(\alpha, \beta)$-metrics. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 277-291. | MR | JFM

[14] Oubiña, A. J.: New classes of almost contact metric structure. Publ. Math. 32 (1985), 187-193. | MR | JFM

[15] Shen, Z.: Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128 (1997), 306-328. | DOI | MR | JFM

[16] Shen, Y., Yu, Y.: On projectively related Randers metrics. Int. J. Math. 19 (2008), 503-520. | DOI | MR | JFM

[17] Tanno, S.: The topology of contact Riemannian manifolds. Ill. J. Math. 12 (1968), 700-717. | DOI | MR | JFM

[18] Tayebi, A., Barzegari, M.: Generalized Berwald spaces with $(\alpha, \beta)$-metrics. Indag. Math., New Ser. 27 (2016), 670-683. | DOI | MR | JFM

[19] Tayebi, A., Najafi, B.: A class of homogeneous Finsler metrics. J. Geom. Phys. 140 (2019), 265-270. | DOI | MR | JFM

[20] Tayebi, A., Peyghan, E.: On a subclass of the generalized Douglas-Weyl metrics. J. Contemp. Math. Anal., Armen. Acad. Sci. 47 (2012), 70-77. | DOI | MR | JFM

[21] Tayebi, A., Sadeghi, H.: On generalized Douglas-Weyl $(\alpha, \beta)$-metrics. Acta Math. Sin., Engl. Ser. 31 (2015), 1611-1620. | DOI | MR | JFM

[22] Tayebi, A., Sadeghi, H., Peyghan, E.: On generalized Douglas-Weyl spaces. Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 587-594. | MR | JFM

[23] Wang, Y.: Minimal Reeb vector fields on almost Kenmotsu manifolds. Czech. Math. J. 67 (2017), 73-86. | DOI | MR | JFM

[24] Xing, H.: The geometric meaning of Randers metrics with isotropic $S$-curvature. Adv. Math., Beijing 34 (2005), 717-730. | MR

Cité par Sources :