Keywords: generalized Douglas-Weyl metric; Randers metric; Kenmotsu manifold; Sasakian manifold
@article{10_21136_CMJ_2020_0241_19,
author = {Tabatabaeifar, Tayebeh and Najafi, Behzad and Rafie-Rad, Mehdi},
title = {On generalized {Douglas-Weyl} {Randers} metrics},
journal = {Czechoslovak Mathematical Journal},
pages = {155--172},
year = {2021},
volume = {71},
number = {1},
doi = {10.21136/CMJ.2020.0241-19},
mrnumber = {4226475},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0241-19/}
}
TY - JOUR AU - Tabatabaeifar, Tayebeh AU - Najafi, Behzad AU - Rafie-Rad, Mehdi TI - On generalized Douglas-Weyl Randers metrics JO - Czechoslovak Mathematical Journal PY - 2021 SP - 155 EP - 172 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0241-19/ DO - 10.21136/CMJ.2020.0241-19 LA - en ID - 10_21136_CMJ_2020_0241_19 ER -
%0 Journal Article %A Tabatabaeifar, Tayebeh %A Najafi, Behzad %A Rafie-Rad, Mehdi %T On generalized Douglas-Weyl Randers metrics %J Czechoslovak Mathematical Journal %D 2021 %P 155-172 %V 71 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0241-19/ %R 10.21136/CMJ.2020.0241-19 %G en %F 10_21136_CMJ_2020_0241_19
Tabatabaeifar, Tayebeh; Najafi, Behzad; Rafie-Rad, Mehdi. On generalized Douglas-Weyl Randers metrics. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 155-172. doi: 10.21136/CMJ.2020.0241-19
[1] Bácsó, S., Papp, I.: A note on a generalized Douglas space. Period. Math. Hung. 48 (2004), 181-184. | DOI | MR | JFM
[2] Bao, D., Robles, C.: Ricci and flag curvatures in Finsler geometry. A Sampler of Riemann-Finsler Geometry Mathematical Sciences Research Institute Publications 50. Cambridge University Press, Cambridge (2004), 197-259. | MR | JFM
[3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203. Birkhäuser, Basel (2010). | DOI | MR | JFM
[4] Cheng, X., Shen, Z.: Finsler Geometry: An Approach Via Randers Spaces. Springer, Berlin (2012). | DOI | MR | JFM
[5] Emamian, M. H., Tayebi, A.: Generalized Douglas-Weyl Finsler metrics. Iran. J. Math. Sci. Inform. 10 (2015), 67-75. | MR | JFM
[6] Hall, G.: On the converse of Weyl's conformal and projective theorems. Publ. Inst. Math., Nouv. Sér. 94 (2013), 55-65. | DOI | MR | JFM
[7] Hasegawa, I., Sabau, V. S., Shimada, H.: Randers spaces of constant flag curvature induced by almost contact metric structures. Hokkaido Math. J. 33 (2004), 215-232. | DOI | MR | JFM
[8] Li, B., Shen, Z.: On Randers metrics of quadratic Riemann curvature. Int. J. Math. 20 (2009), 369-376. | DOI | MR | JFM
[9] Milkovszki, T., Muzsnay, Z.: On the projective Finsler metrizability and the integrability of Rapcsák equation. Czech. Math. J. 67 (2017), 469-495. | DOI | MR | JFM
[10] Nagaraja, H. G., Kumar, D. L. Kiran, Prasad, V. S.: Ricci solitons on Kenmotsu manifolds under $D$-homothetic deformation. Khayyam J. Math. 4 (2018), 102-109. | DOI | MR | JFM
[11] Najafi, B., Bidabad, B., Tayebi, A.: On $R$-quadratic Finsler metrics. Iran. J. Sci. Technol., Trans. A, Sci. 4 (2007), 439-443. | MR | JFM
[12] Najafi, B., Shen, Z., Tayebi, A.: On a projective class of Finsler metrics. Publ. Math. 70 (2007), 211-219. | MR | JFM
[13] Najafi, B., Tayebi, A.: Some curvature properties of $(\alpha, \beta)$-metrics. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 277-291. | MR | JFM
[14] Oubiña, A. J.: New classes of almost contact metric structure. Publ. Math. 32 (1985), 187-193. | MR | JFM
[15] Shen, Z.: Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128 (1997), 306-328. | DOI | MR | JFM
[16] Shen, Y., Yu, Y.: On projectively related Randers metrics. Int. J. Math. 19 (2008), 503-520. | DOI | MR | JFM
[17] Tanno, S.: The topology of contact Riemannian manifolds. Ill. J. Math. 12 (1968), 700-717. | DOI | MR | JFM
[18] Tayebi, A., Barzegari, M.: Generalized Berwald spaces with $(\alpha, \beta)$-metrics. Indag. Math., New Ser. 27 (2016), 670-683. | DOI | MR | JFM
[19] Tayebi, A., Najafi, B.: A class of homogeneous Finsler metrics. J. Geom. Phys. 140 (2019), 265-270. | DOI | MR | JFM
[20] Tayebi, A., Peyghan, E.: On a subclass of the generalized Douglas-Weyl metrics. J. Contemp. Math. Anal., Armen. Acad. Sci. 47 (2012), 70-77. | DOI | MR | JFM
[21] Tayebi, A., Sadeghi, H.: On generalized Douglas-Weyl $(\alpha, \beta)$-metrics. Acta Math. Sin., Engl. Ser. 31 (2015), 1611-1620. | DOI | MR | JFM
[22] Tayebi, A., Sadeghi, H., Peyghan, E.: On generalized Douglas-Weyl spaces. Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 587-594. | MR | JFM
[23] Wang, Y.: Minimal Reeb vector fields on almost Kenmotsu manifolds. Czech. Math. J. 67 (2017), 73-86. | DOI | MR | JFM
[24] Xing, H.: The geometric meaning of Randers metrics with isotropic $S$-curvature. Adv. Math., Beijing 34 (2005), 717-730. | MR
Cité par Sources :