A note on Skolem-Noether algebras
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 137-154
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The paper was motivated by Kovacs' paper (1973), Isaacs' paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb N$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon {\rm M}_n(K)\to {\rm M}_n(S)$ be extended to an inner automorphism of ${\rm M}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$.
The paper was motivated by Kovacs' paper (1973), Isaacs' paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb N$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon {\rm M}_n(K)\to {\rm M}_n(S)$ be extended to an inner automorphism of ${\rm M}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$.
DOI :
10.21136/CMJ.2020.0215-19
Classification :
16K20, 16S50, 16W20
Keywords: Skolem-Noether algebra; (inner) automorphism; matrix algebra; central simple algebra; central separable algebra; semilocal ring; unique factorization domain (UFD); stably finite ring; Dedekind-finite ring
Keywords: Skolem-Noether algebra; (inner) automorphism; matrix algebra; central simple algebra; central separable algebra; semilocal ring; unique factorization domain (UFD); stably finite ring; Dedekind-finite ring
@article{10_21136_CMJ_2020_0215_19,
author = {Han, Juncheol and Lee, Tsiu-Kwen and Park, Sangwon},
title = {A note on {Skolem-Noether} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {137--154},
year = {2021},
volume = {71},
number = {1},
doi = {10.21136/CMJ.2020.0215-19},
mrnumber = {4226474},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0215-19/}
}
TY - JOUR AU - Han, Juncheol AU - Lee, Tsiu-Kwen AU - Park, Sangwon TI - A note on Skolem-Noether algebras JO - Czechoslovak Mathematical Journal PY - 2021 SP - 137 EP - 154 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0215-19/ DO - 10.21136/CMJ.2020.0215-19 LA - en ID - 10_21136_CMJ_2020_0215_19 ER -
%0 Journal Article %A Han, Juncheol %A Lee, Tsiu-Kwen %A Park, Sangwon %T A note on Skolem-Noether algebras %J Czechoslovak Mathematical Journal %D 2021 %P 137-154 %V 71 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0215-19/ %R 10.21136/CMJ.2020.0215-19 %G en %F 10_21136_CMJ_2020_0215_19
Han, Juncheol; Lee, Tsiu-Kwen; Park, Sangwon. A note on Skolem-Noether algebras. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 137-154. doi: 10.21136/CMJ.2020.0215-19
Cité par Sources :