Keywords: conformal vector field; unit tangent bundle; $g$-natural metric
@article{10_21136_CMJ_2020_0193_19,
author = {Abbassi, Mohamed Tahar Kadaoui and Amri, Noura},
title = {On $g$-natural conformal vector fields on unit tangent bundles},
journal = {Czechoslovak Mathematical Journal},
pages = {75--109},
year = {2021},
volume = {71},
number = {1},
doi = {10.21136/CMJ.2020.0193-19},
mrnumber = {4226472},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0193-19/}
}
TY - JOUR AU - Abbassi, Mohamed Tahar Kadaoui AU - Amri, Noura TI - On $g$-natural conformal vector fields on unit tangent bundles JO - Czechoslovak Mathematical Journal PY - 2021 SP - 75 EP - 109 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0193-19/ DO - 10.21136/CMJ.2020.0193-19 LA - en ID - 10_21136_CMJ_2020_0193_19 ER -
%0 Journal Article %A Abbassi, Mohamed Tahar Kadaoui %A Amri, Noura %T On $g$-natural conformal vector fields on unit tangent bundles %J Czechoslovak Mathematical Journal %D 2021 %P 75-109 %V 71 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0193-19/ %R 10.21136/CMJ.2020.0193-19 %G en %F 10_21136_CMJ_2020_0193_19
Abbassi, Mohamed Tahar Kadaoui; Amri, Noura. On $g$-natural conformal vector fields on unit tangent bundles. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 75-109. doi: 10.21136/CMJ.2020.0193-19
[1] Abbassi, M. T. K.: Métriques naturelles sur le fibré tangent à une variété Riemannienne. Editions universitaires europeennes, Paris (2012), French.
[2] Abbassi, M. T. K., Amri, N., Calvaruso, G.: Kaluza-Klein type Ricci solitons on unit tangent sphere bundles. Differ. Geom. Appl. 59 (2018), 184-203. | DOI | MR | JFM
[3] Abbassi, M. T. K., Calvaruso, G.: $g$-natural contact metrics on unit tangent sphere bundles. Monaths. Math. 151 (2007), 89-109. | DOI | MR | JFM
[4] Abbassi, M. T. K., Calvaruso, G.: $g$-natural metrics of constant curvature on unit tangent sphere bundles. Arch. Math., Brno 48 (2012), 81-95. | DOI | MR | JFM
[5] Abbassi, M. T. K., Kowalski, O.: On $g$-natural metrics with constant scalar curvature on unit tangent sphere bundles. Topics in Almost Hermitian Geometry and Related Fields World Scientific, Hackensack (2005), 1-29. | DOI | MR | JFM
[6] Abbassi, M. T. K., Kowalski, O.: Naturality of homogeneous metrics on Stiefel manifolds $SO(m+1)/SO(m-1)$. Differ. Geom. Appl. 28 (2010), 131-139. | DOI | MR | JFM
[7] Abbassi, M. T. K., Kowalski, O.: On Einstein Riemannian $g$-natural metrics on unit tangent sphere bundles. Ann. Global Anal. Geom. 38 (2010), 11-20. | DOI | MR | JFM
[8] Abbassi, M. T. K., Sarih, M.: Killing vector fields on tangent bundles with Cheeger-Gromoll metric. Tsukuba J. Math. 27 (2003), 295-306. | DOI | MR | JFM
[9] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math., Brno 41 (2005), 71-92. | MR | JFM
[10] Abbassi, M. T. K., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Differ. Geom. Appl. 22 (2005), 19-47. | DOI | MR | JFM
[11] Benyounes, M., Loubeau, E., Todjihounde, L.: Harmonic maps and Kaluza-Klein metrics on spheres. Rocky Mt. J. Math. 42 (2012), 791-821. | DOI | MR | JFM
[12] Calvaruso, G., Martín-Molina, V.: Paracontact metric structures on the unit tangent sphere bundle. Ann. Mat. Pura Appl. (4) 194 (2015), 1359-1380. | DOI | MR | JFM
[13] Calvaruso, G., Perrone, D.: Homogeneous and $H$-contact unit tangent sphere bundles. J. Aust. Math. Soc. 88 (2010), 323-337. | DOI | MR | JFM
[14] Calvaruso, G., Perrone, D.: Metrics of Kaluza-Klein type on the anti-de Sitter space $\mathbb{H}_1^3$. Math. Nachr. 287 (2014), 885-902. | DOI | MR | JFM
[15] Deshmukh, S.: Geometry of conformal vector fields. Arab J. Math. Sci. 23 (2017), 44-73. | DOI | MR | JFM
[16] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73-88. | DOI | MR | JFM
[17] Ewert-Krzemieniewski, S.: On Killing vector fields on a tangent bundle with $g$-natural metric. I. Note Mat. 34 (2014), 107-133. | DOI | MR | JFM
[18] Gezer, A., Bilen, L.: On infinitesimal conformal transformations with respect to the Cheeger-Gromoll metric. An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 20 (2012), 113-128. | DOI | MR | JFM
[19] Hall, G. S.: Symmetries and Curvature Structure in General Relativity. World Scientific Lecture Notes in Physics 46, World Scientific, River Edge (2004). | DOI | MR | JFM
[20] Hedayatian, S., Bidabad, B.: Conformal vector fields on tangent bundle of a Riemannian manifold. Iran. J. Sci. Technol, Trans. A, Sci. 29 (2005), 531-539. | MR | JFM
[21] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993). | DOI | MR | JFM
[22] Konno, T.: Killing vector fields on tangent sphere bundles. Kodai Math. J. 21 (1998), 61-72. | DOI | MR | JFM
[23] Konno, T.: Infinitesimal isometries on tangent sphere bundles over three-dimensional manifolds. Hiroshima Math. J. 41 (2011), 343-366. | DOI | MR | JFM
[24] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification. Bull. Tokyo Gakugei Univ., Sect. IV, Ser. Math. Nat. Sci. 40 (1988), 1-29. | MR | JFM
[25] Peyghan, E., Heydari, A.: Conformal vector fields on tangent bundle of a Riemannian manifold. J. Math. Anal. Appl. 347 (2008), 136-142. | DOI | MR | JFM
[26] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J., II. Ser. 10 (1958), 338-354. | DOI | MR | JFM
[27] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. II. Tohoku Math. J., II. Ser. 14 (1962), 146-155. | DOI | MR | JFM
[28] Şimşir, F. M., Tezer, C.: Conformal vector fields with respect to the Sasaki metric tensor. J. Geom. 84 (2005), 133-151. | DOI | MR | JFM
[29] Tanno, S.: Killing vectors and geodesic flow vectors on tangent bundles. J. Reine Angew. Math. 282 (1976), 162-171. | DOI | MR | JFM
[30] Wood, C. M.: An existence theorem for harmonic sections. Manuscr. Math. 68 (1990), 69-75. | DOI | MR | JFM
[31] Yano, K., Kobayashi, S.: Prolongations of tensor fields and connections to tangent bundles. I: General theory. J. Math. Soc. Japan 18 (1966), 194-210. | DOI | MR | JFM
[32] Yano, K., Kobayashi, S.: Prolongations of tensor fields and connections to tangent bundles. II: Infinitesimal automorphisms. J. Math. Soc. Japan 18 (1966), 236-246. | DOI | MR | JFM
Cité par Sources :