Squarefree monomial ideals with maximal depth
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1111-1124
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(R,\mathfrak m)$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak p$ of $M$ such that depth $M=\dim R/\mathfrak p$. In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.
Let $(R,\mathfrak m)$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak p$ of $M$ such that depth $M=\dim R/\mathfrak p$. In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.
DOI : 10.21136/CMJ.2020.0171-19
Classification : 05E40, 13C15
Keywords: maximal depth; cycle graph; line graph; whisker graph; transversal polymatroidal ideal; power of edge ideal
@article{10_21136_CMJ_2020_0171_19,
     author = {Rahimi, Ahad},
     title = {Squarefree monomial ideals with maximal depth},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1111--1124},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0171-19},
     mrnumber = {4181800},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/}
}
TY  - JOUR
AU  - Rahimi, Ahad
TI  - Squarefree monomial ideals with maximal depth
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1111
EP  - 1124
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/
DO  - 10.21136/CMJ.2020.0171-19
LA  - en
ID  - 10_21136_CMJ_2020_0171_19
ER  - 
%0 Journal Article
%A Rahimi, Ahad
%T Squarefree monomial ideals with maximal depth
%J Czechoslovak Mathematical Journal
%D 2020
%P 1111-1124
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/
%R 10.21136/CMJ.2020.0171-19
%G en
%F 10_21136_CMJ_2020_0171_19
Rahimi, Ahad. Squarefree monomial ideals with maximal depth. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1111-1124. doi: 10.21136/CMJ.2020.0171-19

[1] Brodmann, M.: Asymptotic stability of Ass$(M/I^n M)$. Proc. Am. Math. Soc. 74 (1979), 16-18. | DOI | MR | JFM

[2] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[3] Faridi, S.: Simplicial trees are sequentially Cohen-Macaulay. J. Pure Appl. Algebra 190 (2004), 121-136. | DOI | MR | JFM

[4] Francisco, C. A., Hà, H. T.: Whiskers and sequentially Cohen-Macaulay graphs. J. Comb. Theory, Ser. A 115 (2008), 304-316. | DOI | MR | JFM

[5] Frühbis-Krüger, A., Terai, N.: Bounds for the regularity of monomial ideals. Mathematiche, Suppl. 53 (1998), 83-97. | MR | JFM

[6] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260, Springer, London (2011). | DOI | MR | JFM

[7] Herzog, J., Rauf, A., Vladoiu, M.: The stable set of associated prime ideals of a polymatroidal ideal. J. Algebr. Comb. 37 (2013), 289-312. | DOI | MR | JFM

[8] Jacques, S.: Betti Numbers of Graph Ideals: Ph.D. Thesis. University of Sheffield, Sheffield (2004), Available at | arXiv

[9] Lam, H. M., Trung, N. V.: Associated primes of powers of edge ideals and ear decompositions of graphs. Trans. Am. Math. Soc. 372 (2019), 3211-3236. | DOI | MR | JFM

[10] Martínez-Bernal, J., Morey, S., Villarreal, R. H.: Associated primes of powers of edge ideals. Collect. Math. 63 (2012), 361-374. | DOI | MR | JFM

[11] Miller, E., Sturmfels, B., Yanagawa, K.: Generic and cogeneric monomial ideals. J. Symb. Comput. 29 (2000), 691-708. | DOI | MR | JFM

[12] Rahimi, A.: Maximal depth property of finitely generated modules. J. Algebra Appl. 17 (2018), Article ID 1850202, 12 pages. | DOI | MR | JFM

[13] Villarreal, R. H.: Monomial Algebras. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton (2015). | DOI | MR | JFM

Cité par Sources :