Squarefree monomial ideals with maximal depth
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1111-1124
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(R,\mathfrak m)$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak p$ of $M$ such that depth $M=\dim R/\mathfrak p$. In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.
DOI :
10.21136/CMJ.2020.0171-19
Classification :
05E40, 13C15
Keywords: maximal depth; cycle graph; line graph; whisker graph; transversal polymatroidal ideal; power of edge ideal
Keywords: maximal depth; cycle graph; line graph; whisker graph; transversal polymatroidal ideal; power of edge ideal
@article{10_21136_CMJ_2020_0171_19,
author = {Rahimi, Ahad},
title = {Squarefree monomial ideals with maximal depth},
journal = {Czechoslovak Mathematical Journal},
pages = {1111--1124},
publisher = {mathdoc},
volume = {70},
number = {4},
year = {2020},
doi = {10.21136/CMJ.2020.0171-19},
mrnumber = {4181800},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/}
}
TY - JOUR AU - Rahimi, Ahad TI - Squarefree monomial ideals with maximal depth JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1111 EP - 1124 VL - 70 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/ DO - 10.21136/CMJ.2020.0171-19 LA - en ID - 10_21136_CMJ_2020_0171_19 ER -
Rahimi, Ahad. Squarefree monomial ideals with maximal depth. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1111-1124. doi: 10.21136/CMJ.2020.0171-19
Cité par Sources :