Squarefree monomial ideals with maximal depth
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1111-1124.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(R,\mathfrak m)$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak p$ of $M$ such that depth $M=\dim R/\mathfrak p$. In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.
DOI : 10.21136/CMJ.2020.0171-19
Classification : 05E40, 13C15
Keywords: maximal depth; cycle graph; line graph; whisker graph; transversal polymatroidal ideal; power of edge ideal
@article{10_21136_CMJ_2020_0171_19,
     author = {Rahimi, Ahad},
     title = {Squarefree monomial ideals with maximal depth},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1111--1124},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.21136/CMJ.2020.0171-19},
     mrnumber = {4181800},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/}
}
TY  - JOUR
AU  - Rahimi, Ahad
TI  - Squarefree monomial ideals with maximal depth
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1111
EP  - 1124
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/
DO  - 10.21136/CMJ.2020.0171-19
LA  - en
ID  - 10_21136_CMJ_2020_0171_19
ER  - 
%0 Journal Article
%A Rahimi, Ahad
%T Squarefree monomial ideals with maximal depth
%J Czechoslovak Mathematical Journal
%D 2020
%P 1111-1124
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/
%R 10.21136/CMJ.2020.0171-19
%G en
%F 10_21136_CMJ_2020_0171_19
Rahimi, Ahad. Squarefree monomial ideals with maximal depth. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1111-1124. doi : 10.21136/CMJ.2020.0171-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0171-19/

Cité par Sources :