Homogenization of a three-phase composites of double-porosity type
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 45-73
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size $\varepsilon ^\beta $ ($\varepsilon >0$ and $\beta >0$) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order $\varepsilon ^2$ (the so-called double-porosity type scaling) while the matrix material has a conductivity of order $1$. By introducing a partial unfolding operator for anisotropic domains we identify the limit problem. In particular, we prove that the effect of the interphase properties on the homogenized models is captured only when the microstructural length scale is of order $\varepsilon ^\beta $ with $0\beta \leq 1$.
In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size $\varepsilon ^\beta $ ($\varepsilon >0$ and $\beta >0$) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order $\varepsilon ^2$ (the so-called double-porosity type scaling) while the matrix material has a conductivity of order $1$. By introducing a partial unfolding operator for anisotropic domains we identify the limit problem. In particular, we prove that the effect of the interphase properties on the homogenized models is captured only when the microstructural length scale is of order $\varepsilon ^\beta $ with $0\beta \leq 1$.
DOI : 10.21136/CMJ.2020.0151-19
Classification : 35B27, 35B45, 35K55, 35K65, 76S05
Keywords: homogenization; three-phase composite; unfolding operator; double-porosity type
@article{10_21136_CMJ_2020_0151_19,
     author = {Boughammoura, Ahmed and Braham, Yousra},
     title = {Homogenization of a three-phase composites of double-porosity type},
     journal = {Czechoslovak Mathematical Journal},
     pages = {45--73},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0151-19},
     mrnumber = {4226471},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0151-19/}
}
TY  - JOUR
AU  - Boughammoura, Ahmed
AU  - Braham, Yousra
TI  - Homogenization of a three-phase composites of double-porosity type
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 45
EP  - 73
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0151-19/
DO  - 10.21136/CMJ.2020.0151-19
LA  - en
ID  - 10_21136_CMJ_2020_0151_19
ER  - 
%0 Journal Article
%A Boughammoura, Ahmed
%A Braham, Yousra
%T Homogenization of a three-phase composites of double-porosity type
%J Czechoslovak Mathematical Journal
%D 2021
%P 45-73
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0151-19/
%R 10.21136/CMJ.2020.0151-19
%G en
%F 10_21136_CMJ_2020_0151_19
Boughammoura, Ahmed; Braham, Yousra. Homogenization of a three-phase composites of double-porosity type. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 45-73. doi: 10.21136/CMJ.2020.0151-19

[1] Allaire, G., Murat, F.: Homogenization of the Neumann problem with nonisolated holes. Asymptotic Anal. 7 (1993), 81-95. | DOI | MR | JFM

[2] Berger, H., Kurukuri, S., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R.: Numerical and analytical approaches for calculating the effective thermo-mechanical properties of three-phase composites. J. Thermal Stresses 30 (2007), 801-817. | DOI

[3] Boughammoura, A.: Homogenization of a degenerate parabolic problem in a highly heterogeneous medium with highly anisotropic fibers. Math. Comput. Modelling 49 (2009), 66-79. | DOI | MR | JFM

[4] Boughammoura, A.: Homogenization of an elastic medium having three phases. Ric. Mat. 64 (2015), 65-85. | DOI | MR | JFM

[5] Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R., Math., Acad. Sci. Paris 335 (2002), 99-104. | DOI | MR | JFM

[6] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008), 1585-1620. | DOI | MR | JFM

[7] Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). | MR | JFM

[8] Drzal, L. T.: Interfaces and interphases. ASM Handbook, Volume 21. Composites D. B. Miracle, S. L. Donaldson ASM International, Ohio (2001), 169-179. | MR

[9] Franc\ru, J., Svansted, N. E. M.: Some remarks on two-scale convergence and periodic unfolding. Appl. Math., Praha 57 (2012), 359-375. | DOI | MR | JFM

[10] Kari, S., Berger, H., Gabbert, U., Guinovart-Diaz, R., Bravo-Castillero, J., Ramos, R. Rodrigues-: Evaluation of influence of interphase material parameters on effective material properties of three phase composites. Composites Sci. Techn. 68 (2008), 684-691. | DOI

[11] Mikata, Y., Taya, M.: Stress field in and around a coated short fiber in an infinite matrix subjected to uniaxial and biaxial loadings. J. Appl. Mech. 52 (1985), 19-24. | DOI

[12] Pukánszky, B.: Interfaces and interphases in multicomponent materials: Past, present, future. European Polymer J. 41 (2005), 645-662. | DOI

Cité par Sources :