Keywords: homogenization; three-phase composite; unfolding operator; double-porosity type
@article{10_21136_CMJ_2020_0151_19,
author = {Boughammoura, Ahmed and Braham, Yousra},
title = {Homogenization of a three-phase composites of double-porosity type},
journal = {Czechoslovak Mathematical Journal},
pages = {45--73},
year = {2021},
volume = {71},
number = {1},
doi = {10.21136/CMJ.2020.0151-19},
mrnumber = {4226471},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0151-19/}
}
TY - JOUR AU - Boughammoura, Ahmed AU - Braham, Yousra TI - Homogenization of a three-phase composites of double-porosity type JO - Czechoslovak Mathematical Journal PY - 2021 SP - 45 EP - 73 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0151-19/ DO - 10.21136/CMJ.2020.0151-19 LA - en ID - 10_21136_CMJ_2020_0151_19 ER -
%0 Journal Article %A Boughammoura, Ahmed %A Braham, Yousra %T Homogenization of a three-phase composites of double-porosity type %J Czechoslovak Mathematical Journal %D 2021 %P 45-73 %V 71 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0151-19/ %R 10.21136/CMJ.2020.0151-19 %G en %F 10_21136_CMJ_2020_0151_19
Boughammoura, Ahmed; Braham, Yousra. Homogenization of a three-phase composites of double-porosity type. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 45-73. doi: 10.21136/CMJ.2020.0151-19
[1] Allaire, G., Murat, F.: Homogenization of the Neumann problem with nonisolated holes. Asymptotic Anal. 7 (1993), 81-95. | DOI | MR | JFM
[2] Berger, H., Kurukuri, S., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Bravo-Castillero, J., Guinovart-Diaz, R.: Numerical and analytical approaches for calculating the effective thermo-mechanical properties of three-phase composites. J. Thermal Stresses 30 (2007), 801-817. | DOI
[3] Boughammoura, A.: Homogenization of a degenerate parabolic problem in a highly heterogeneous medium with highly anisotropic fibers. Math. Comput. Modelling 49 (2009), 66-79. | DOI | MR | JFM
[4] Boughammoura, A.: Homogenization of an elastic medium having three phases. Ric. Mat. 64 (2015), 65-85. | DOI | MR | JFM
[5] Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R., Math., Acad. Sci. Paris 335 (2002), 99-104. | DOI | MR | JFM
[6] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008), 1585-1620. | DOI | MR | JFM
[7] Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). | MR | JFM
[8] Drzal, L. T.: Interfaces and interphases. ASM Handbook, Volume 21. Composites D. B. Miracle, S. L. Donaldson ASM International, Ohio (2001), 169-179. | MR
[9] Franc\ru, J., Svansted, N. E. M.: Some remarks on two-scale convergence and periodic unfolding. Appl. Math., Praha 57 (2012), 359-375. | DOI | MR | JFM
[10] Kari, S., Berger, H., Gabbert, U., Guinovart-Diaz, R., Bravo-Castillero, J., Ramos, R. Rodrigues-: Evaluation of influence of interphase material parameters on effective material properties of three phase composites. Composites Sci. Techn. 68 (2008), 684-691. | DOI
[11] Mikata, Y., Taya, M.: Stress field in and around a coated short fiber in an infinite matrix subjected to uniaxial and biaxial loadings. J. Appl. Mech. 52 (1985), 19-24. | DOI
[12] Pukánszky, B.: Interfaces and interphases in multicomponent materials: Past, present, future. European Polymer J. 41 (2005), 645-662. | DOI
Cité par Sources :