Keywords: main angle; signed graph; adjacency matrix; Laplacian matrix; Gram matrix
@article{10_21136_CMJ_2020_0147_19,
author = {Stani\'c, Zoran},
title = {Main eigenvalues of real symmetric matrices with application to signed graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {1091--1102},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0147-19},
mrnumber = {4181798},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0147-19/}
}
TY - JOUR AU - Stanić, Zoran TI - Main eigenvalues of real symmetric matrices with application to signed graphs JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1091 EP - 1102 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0147-19/ DO - 10.21136/CMJ.2020.0147-19 LA - en ID - 10_21136_CMJ_2020_0147_19 ER -
%0 Journal Article %A Stanić, Zoran %T Main eigenvalues of real symmetric matrices with application to signed graphs %J Czechoslovak Mathematical Journal %D 2020 %P 1091-1102 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0147-19/ %R 10.21136/CMJ.2020.0147-19 %G en %F 10_21136_CMJ_2020_0147_19
Stanić, Zoran. Main eigenvalues of real symmetric matrices with application to signed graphs. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1091-1102. doi: 10.21136/CMJ.2020.0147-19
[1] Cardoso, D. M., Sciriha, I., Zerafa, C.: Main eigenvalues and $(\kappa, \tau)$-regular sets. Linear Algebra Appl. 432 (2010), 2399-2408. | DOI | MR | JFM
[2] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications. J. A. Barth Verlag, Heidelberg (1995). | MR | JFM
[3] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). | DOI | MR | JFM
[4] Deng, H., Huang, H.: On the main signless Laplacian eigenvalues of a graph. Electron. J. Linear Algebra 26 (2013), 381-393. | DOI | MR | JFM
[5] Doob, M.: A geometric interpretation of the least eigenvalue of a line graph. Combinatorial Mathematics and its Applications R. C. Bose, T. A. Dowling University of North Carolina, Chapel Hill (1970), 126-135. | MR | JFM
[6] Haynsworth, E. V.: Applications of a theorem on partitioned matrices. J. Res. Natl. Bur. Stand., Sec. B 63 (1959), 73-78. | DOI | MR | JFM
[7] Hou, Y., Tang, Z., Shiu, W. C.: Some results on graphs with exactly two main eigenvalues. Appl. Math. Lett. 25 (2012), 1274-1278. | DOI | MR | JFM
[8] Hou, Y., Zhou, H.: Trees with exactly two main eigenvalues. J. Nat. Sci. Hunan Norm. Univ. 28 (2005), 1-3 Chinese. | MR | JFM
[9] Petersdorf, M., Sachs, H.: Über Spektrum, Automorphismengruppe und Teiler eines Graphen. Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 123-128 German. | MR | JFM
[10] Rowlinson, P.: The main eigenvalues of a graph: A survey. Appl. Anal. Discrete Math. 1 (2007), 445-471. | DOI | MR | JFM
[11] Stanić, Z.: Inequalities for Graph Eigenvalues. London Mathematical Society Lecture Note Series 423, Cambridge University Press, Cambridge (2015). | DOI | MR | JFM
[12] Stanić, Z.: Bounding the largest eigenvalue of signed graphs. Linear Algebra Appl. 573 (2019), 80-89. | DOI | MR | JFM
[13] Zaslavsky, T.: Matrices in the theory of signed simple graphs. Advances in Discrete Mathematics and Applications B. D. Acharya, G. O. H. Katona, J. Nešetřil Ramanujan Mathematical Society Lecture Notes Series 13, Ramanujan Mathematical Society, Mysore (2010), 207-229. | MR | JFM
Cité par Sources :