Main eigenvalues of real symmetric matrices with application to signed graphs
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1091-1102.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An eigenvalue of a real symmetric matrix is called main if there is an associated eigenvector not orthogonal to the all-1 vector ${\bf j}$. Main eigenvalues are frequently considered in the framework of simple undirected graphs. In this study we generalize some results and then apply them to signed graphs.
DOI : 10.21136/CMJ.2020.0147-19
Classification : 05C22, 05C50
Keywords: main angle; signed graph; adjacency matrix; Laplacian matrix; Gram matrix
@article{10_21136_CMJ_2020_0147_19,
     author = {Stani\'c, Zoran},
     title = {Main eigenvalues of real symmetric matrices with application to signed graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1091--1102},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.21136/CMJ.2020.0147-19},
     mrnumber = {4181798},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0147-19/}
}
TY  - JOUR
AU  - Stanić, Zoran
TI  - Main eigenvalues of real symmetric matrices with application to signed graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1091
EP  - 1102
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0147-19/
DO  - 10.21136/CMJ.2020.0147-19
LA  - en
ID  - 10_21136_CMJ_2020_0147_19
ER  - 
%0 Journal Article
%A Stanić, Zoran
%T Main eigenvalues of real symmetric matrices with application to signed graphs
%J Czechoslovak Mathematical Journal
%D 2020
%P 1091-1102
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0147-19/
%R 10.21136/CMJ.2020.0147-19
%G en
%F 10_21136_CMJ_2020_0147_19
Stanić, Zoran. Main eigenvalues of real symmetric matrices with application to signed graphs. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1091-1102. doi : 10.21136/CMJ.2020.0147-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0147-19/

Cité par Sources :