$(\delta, 2)$-primary ideals of a commutative ring
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1079-1090 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative ring with nonzero identity, let $\mathcal {I(R)}$ be the set of all ideals of $R$ and $\delta \colon \mathcal {I(R)}\rightarrow \mathcal {I(R)}$ an expansion of ideals of $R$ defined by $I\mapsto \delta (I)$. We introduce the concept of $(\delta ,2)$-primary ideals in commutative rings. A proper ideal $I$ of $R$ is called a $(\delta ,2)$-primary ideal if whenever $a,b\in R$ and $ab\in I$, then $a^{2}\in I$ or $b^{2}\in \delta (I)$. Our purpose is to extend the concept of $2$-ideals to $(\delta ,2)$-primary ideals of commutative rings. Then we investigate the basic properties of $(\delta ,2)$-primary ideals and also discuss the relations among $(\delta ,2)$-primary, $\delta $-primary and $2$-prime ideals.
Let $R$ be a commutative ring with nonzero identity, let $\mathcal {I(R)}$ be the set of all ideals of $R$ and $\delta \colon \mathcal {I(R)}\rightarrow \mathcal {I(R)}$ an expansion of ideals of $R$ defined by $I\mapsto \delta (I)$. We introduce the concept of $(\delta ,2)$-primary ideals in commutative rings. A proper ideal $I$ of $R$ is called a $(\delta ,2)$-primary ideal if whenever $a,b\in R$ and $ab\in I$, then $a^{2}\in I$ or $b^{2}\in \delta (I)$. Our purpose is to extend the concept of $2$-ideals to $(\delta ,2)$-primary ideals of commutative rings. Then we investigate the basic properties of $(\delta ,2)$-primary ideals and also discuss the relations among $(\delta ,2)$-primary, $\delta $-primary and $2$-prime ideals.
DOI : 10.21136/CMJ.2020.0146-19
Classification : 05A15, 13A15, 13F05, 13G05
Keywords: $(\delta, 2)$-primary ideal; $2$-prime ideal; $\delta $-primary ideal
@article{10_21136_CMJ_2020_0146_19,
     author = {Ulucak, G\"ul\c{s}en and \c{C}elikel, Ece Yetkin},
     title = {$(\delta, 2)$-primary ideals of a commutative ring},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1079--1090},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0146-19},
     mrnumber = {4181797},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/}
}
TY  - JOUR
AU  - Ulucak, Gülşen
AU  - Çelikel, Ece Yetkin
TI  - $(\delta, 2)$-primary ideals of a commutative ring
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1079
EP  - 1090
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/
DO  - 10.21136/CMJ.2020.0146-19
LA  - en
ID  - 10_21136_CMJ_2020_0146_19
ER  - 
%0 Journal Article
%A Ulucak, Gülşen
%A Çelikel, Ece Yetkin
%T $(\delta, 2)$-primary ideals of a commutative ring
%J Czechoslovak Mathematical Journal
%D 2020
%P 1079-1090
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/
%R 10.21136/CMJ.2020.0146-19
%G en
%F 10_21136_CMJ_2020_0146_19
Ulucak, Gülşen; Çelikel, Ece Yetkin. $(\delta, 2)$-primary ideals of a commutative ring. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1079-1090. doi: 10.21136/CMJ.2020.0146-19

[1] Anderson, D. D., Knopp, K. R., Lewin, R. L.: Ideals generated by powers of elements. Bull. Aust. Math. Soc. 49 (1994), 373-376. | DOI | MR | JFM

[2] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. | DOI | MR | JFM

[3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley Publishing, Reading (1969). | DOI | MR | JFM

[4] Badawi, A., Fahid, B.: On weakly 2-absorbing $\delta$-primary ideals of commutative rings. (to appear) in Georgian Math. J. | DOI | MR

[5] Badawi, A., Sonmez, D., Yesilot, G.: On weakly $\delta$-semiprimary ideals of commutative rings. Algebra Colloq. 25 (2018), 387-398. | DOI | MR | JFM

[6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. | DOI | MR | JFM

[7] Gilmer, R.: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston (1992). | MR | JFM

[8] Groenewald, N. J.: A characterization of semi-prime ideals in near-rings. J. Aust. Math. Soc., Ser. A 35 (1983), 194-196. | DOI | MR | JFM

[9] Huckaba, J. A.: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, New York (1988). | MR | JFM

[10] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). | MR | JFM

[11] Koc, S., Tekir, U., Ulucak, G.: On strongly quasi primary ideals. Bull. Korean Math. Soc. 56 (2019), 729-743. | DOI | MR | JFM

[12] Zhao, D.: $\delta$-primary ideals of commutative rings. Kyungpook Math. J. 41 (2001), 17-22. | MR | JFM

Cité par Sources :