$(\delta, 2)$-primary ideals of a commutative ring
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1079-1090
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a commutative ring with nonzero identity, let $\mathcal {I(R)}$ be the set of all ideals of $R$ and $\delta \colon \mathcal {I(R)}\rightarrow \mathcal {I(R)}$ an expansion of ideals of $R$ defined by $I\mapsto \delta (I)$. We introduce the concept of $(\delta ,2)$-primary ideals in commutative rings. A proper ideal $I$ of $R$ is called a $(\delta ,2)$-primary ideal if whenever $a,b\in R$ and $ab\in I$, then $a^{2}\in I$ or $b^{2}\in \delta (I)$. Our purpose is to extend the concept of $2$-ideals to $(\delta ,2)$-primary ideals of commutative rings. Then we investigate the basic properties of $(\delta ,2)$-primary ideals and also discuss the relations among $(\delta ,2)$-primary, $\delta $-primary and $2$-prime ideals.
DOI :
10.21136/CMJ.2020.0146-19
Classification :
05A15, 13A15, 13F05, 13G05
Keywords: $(\delta, 2)$-primary ideal; $2$-prime ideal; $\delta $-primary ideal
Keywords: $(\delta, 2)$-primary ideal; $2$-prime ideal; $\delta $-primary ideal
@article{10_21136_CMJ_2020_0146_19,
author = {Ulucak, G\"ul\c{s}en and \c{C}elikel, Ece Yetkin},
title = {$(\delta, 2)$-primary ideals of a commutative ring},
journal = {Czechoslovak Mathematical Journal},
pages = {1079--1090},
publisher = {mathdoc},
volume = {70},
number = {4},
year = {2020},
doi = {10.21136/CMJ.2020.0146-19},
mrnumber = {4181797},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/}
}
TY - JOUR AU - Ulucak, Gülşen AU - Çelikel, Ece Yetkin TI - $(\delta, 2)$-primary ideals of a commutative ring JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1079 EP - 1090 VL - 70 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/ DO - 10.21136/CMJ.2020.0146-19 LA - en ID - 10_21136_CMJ_2020_0146_19 ER -
%0 Journal Article %A Ulucak, Gülşen %A Çelikel, Ece Yetkin %T $(\delta, 2)$-primary ideals of a commutative ring %J Czechoslovak Mathematical Journal %D 2020 %P 1079-1090 %V 70 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/ %R 10.21136/CMJ.2020.0146-19 %G en %F 10_21136_CMJ_2020_0146_19
Ulucak, Gülşen; Çelikel, Ece Yetkin. $(\delta, 2)$-primary ideals of a commutative ring. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1079-1090. doi: 10.21136/CMJ.2020.0146-19
Cité par Sources :