Keywords: $(\delta, 2)$-primary ideal; $2$-prime ideal; $\delta $-primary ideal
@article{10_21136_CMJ_2020_0146_19,
author = {Ulucak, G\"ul\c{s}en and \c{C}elikel, Ece Yetkin},
title = {$(\delta, 2)$-primary ideals of a commutative ring},
journal = {Czechoslovak Mathematical Journal},
pages = {1079--1090},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0146-19},
mrnumber = {4181797},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/}
}
TY - JOUR AU - Ulucak, Gülşen AU - Çelikel, Ece Yetkin TI - $(\delta, 2)$-primary ideals of a commutative ring JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1079 EP - 1090 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/ DO - 10.21136/CMJ.2020.0146-19 LA - en ID - 10_21136_CMJ_2020_0146_19 ER -
%0 Journal Article %A Ulucak, Gülşen %A Çelikel, Ece Yetkin %T $(\delta, 2)$-primary ideals of a commutative ring %J Czechoslovak Mathematical Journal %D 2020 %P 1079-1090 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0146-19/ %R 10.21136/CMJ.2020.0146-19 %G en %F 10_21136_CMJ_2020_0146_19
Ulucak, Gülşen; Çelikel, Ece Yetkin. $(\delta, 2)$-primary ideals of a commutative ring. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1079-1090. doi: 10.21136/CMJ.2020.0146-19
[1] Anderson, D. D., Knopp, K. R., Lewin, R. L.: Ideals generated by powers of elements. Bull. Aust. Math. Soc. 49 (1994), 373-376. | DOI | MR | JFM
[2] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. | DOI | MR | JFM
[3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra. Addison-Wesley Publishing, Reading (1969). | DOI | MR | JFM
[4] Badawi, A., Fahid, B.: On weakly 2-absorbing $\delta$-primary ideals of commutative rings. (to appear) in Georgian Math. J. | DOI | MR
[5] Badawi, A., Sonmez, D., Yesilot, G.: On weakly $\delta$-semiprimary ideals of commutative rings. Algebra Colloq. 25 (2018), 387-398. | DOI | MR | JFM
[6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. | DOI | MR | JFM
[7] Gilmer, R.: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90, Queen's University, Kingston (1992). | MR | JFM
[8] Groenewald, N. J.: A characterization of semi-prime ideals in near-rings. J. Aust. Math. Soc., Ser. A 35 (1983), 194-196. | DOI | MR | JFM
[9] Huckaba, J. A.: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, New York (1988). | MR | JFM
[10] Kaplansky, I.: Commutative Rings. University of Chicago Press, Chicago (1974). | MR | JFM
[11] Koc, S., Tekir, U., Ulucak, G.: On strongly quasi primary ideals. Bull. Korean Math. Soc. 56 (2019), 729-743. | DOI | MR | JFM
[12] Zhao, D.: $\delta$-primary ideals of commutative rings. Kyungpook Math. J. 41 (2001), 17-22. | MR | JFM
Cité par Sources :