Attractors for stochastic reaction-diffusion equation with additive homogeneous noise
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 21-43 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space $\mathbb{R}^d$ driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted $L^2$-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.
We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space $\mathbb{R}^d$ driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted $L^2$-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.
DOI : 10.21136/CMJ.2020.0144-19
Classification : 35B41, 35K57, 37L55, 60H15
Keywords: reaction-diffusion equation; random attractor; spatially homogeneous noise
@article{10_21136_CMJ_2020_0144_19,
     author = {Slav{\'\i}k, Jakub},
     title = {Attractors for stochastic reaction-diffusion equation with additive homogeneous noise},
     journal = {Czechoslovak Mathematical Journal},
     pages = {21--43},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0144-19},
     mrnumber = {4226470},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0144-19/}
}
TY  - JOUR
AU  - Slavík, Jakub
TI  - Attractors for stochastic reaction-diffusion equation with additive homogeneous noise
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 21
EP  - 43
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0144-19/
DO  - 10.21136/CMJ.2020.0144-19
LA  - en
ID  - 10_21136_CMJ_2020_0144_19
ER  - 
%0 Journal Article
%A Slavík, Jakub
%T Attractors for stochastic reaction-diffusion equation with additive homogeneous noise
%J Czechoslovak Mathematical Journal
%D 2021
%P 21-43
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0144-19/
%R 10.21136/CMJ.2020.0144-19
%G en
%F 10_21136_CMJ_2020_0144_19
Slavík, Jakub. Attractors for stochastic reaction-diffusion equation with additive homogeneous noise. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 21-43. doi: 10.21136/CMJ.2020.0144-19

[1] Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics, Springer, Berlin (1998). | DOI | MR | JFM

[2] Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., Dlotko, T.: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14 (2004), 253-293. | DOI | MR | JFM

[3] Bates, P. W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6 (2006), 1-21. | DOI | MR | JFM

[4] Bates, P. W., Lu, K., Wang, B.: Tempered random attractors for parabolic equations in weighted spaces. J. Math. Phys. 54 (2013), Article ID 081505, 26 pages. | DOI | MR | JFM

[5] Brzeźniak, Z.: On Sobolev and Besov spaces regularity of Brownian paths. Stochastics Stochastics Rep. 56 (1996), 1-15. | DOI | MR | JFM

[6] Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), 245-295. | DOI | MR | JFM

[7] Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358 (2006), 5587-5629. | DOI | MR | JFM

[8] Brzeźniak, Z., Peszat, S.: Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process. Stud. Math. 137 (1999), 261-299. | DOI | MR | JFM

[9] Brzeźniak, Z., Neerven, J. van: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), 261-303. | DOI | MR | JFM

[10] Caraballo, T., Langa, J. A., Melnik, V. S., Valero, J.: Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal. 11 (2003), 153-201. | DOI | MR | JFM

[11] Cholewa, J. W., Dlotko, T.: Cauchy problems in weighted Lebesgue spaces. Czech. Math. J. 54 (2004), 991-1013. | DOI | MR | JFM

[12] Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equations 9 (1997), 307-341. | DOI | MR | JFM

[13] Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100 (1994), 365-393. | DOI | MR | JFM

[14] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 152, Cambridge University Press, Cambridge (2014). | DOI | MR | JFM

[15] Dawson, D. A., Salehi, H.: Spatially homogeneous random evolutions. J. Multivariate Anal. 10 (1980), 141-180. | DOI | MR | JFM

[16] Feireisl, E.: Bounded, locally compact global attractors for semilinear damped wave equations on {$\bold R^N$}. Differ. Integral Equ. 9 (1996), 1147-1156. | MR | JFM

[17] Flandoli, F., Schmalfuss, B.: Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stochastics Stochastics Rep. 59 (1996), 21-45. | DOI | MR | JFM

[18] Gel'fand, I. M., Vilenkin, N. Y.: Generalized Functions. Vol. 4. Applications of Harmonic Analysis. Academic Press, New York (1964). | MR | JFM

[19] Grasselli, M., Pražák, D., Schimperna, G.: Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories. J. Differ. Equations 249 (2010), 2287-2315. | DOI | MR | JFM

[20] Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. I. Math. Nachr. 167 (1994), 131-156. | DOI | MR | JFM

[21] Málek, J., Pražák, D.: Large time behavior via the method of $l$-trajectories. J. Differ. Equations 181 (2002), 243-279. | DOI | MR | JFM

[22] Ondreját, M.: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process. J. Evol. Equ. 4 (2004), 169-191. | DOI | MR | JFM

[23] Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes Appl. 72 (1997), 187-204. | DOI | MR | JFM

[24] Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 116 (2000), 421-443. | DOI | MR | JFM

[25] Tessitore, G., Zabczyk, J.: Invariant measures for stochastic heat equations. Probab. Math. Stat. 18 (1998), 271-287. | MR | JFM

[26] Neerven, J. M. A. M. van, Veraar, M. C., Weis, L.: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255 (2008), 940-993. | DOI | MR | JFM

[27] Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equations 253 (2012), 1544-1583. | DOI | MR | JFM

[28] Zelik, S. V.: The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's $\epsilon$-entropy. Math. Nachr. 232 (2001), 129-179. | DOI | MR | JFM

Cité par Sources :