Keywords: reaction-diffusion equation; random attractor; spatially homogeneous noise
@article{10_21136_CMJ_2020_0144_19,
author = {Slav{\'\i}k, Jakub},
title = {Attractors for stochastic reaction-diffusion equation with additive homogeneous noise},
journal = {Czechoslovak Mathematical Journal},
pages = {21--43},
year = {2021},
volume = {71},
number = {1},
doi = {10.21136/CMJ.2020.0144-19},
mrnumber = {4226470},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0144-19/}
}
TY - JOUR AU - Slavík, Jakub TI - Attractors for stochastic reaction-diffusion equation with additive homogeneous noise JO - Czechoslovak Mathematical Journal PY - 2021 SP - 21 EP - 43 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0144-19/ DO - 10.21136/CMJ.2020.0144-19 LA - en ID - 10_21136_CMJ_2020_0144_19 ER -
%0 Journal Article %A Slavík, Jakub %T Attractors for stochastic reaction-diffusion equation with additive homogeneous noise %J Czechoslovak Mathematical Journal %D 2021 %P 21-43 %V 71 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0144-19/ %R 10.21136/CMJ.2020.0144-19 %G en %F 10_21136_CMJ_2020_0144_19
Slavík, Jakub. Attractors for stochastic reaction-diffusion equation with additive homogeneous noise. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 21-43. doi: 10.21136/CMJ.2020.0144-19
[1] Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics, Springer, Berlin (1998). | DOI | MR | JFM
[2] Arrieta, J. M., Rodriguez-Bernal, A., Cholewa, J. W., Dlotko, T.: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14 (2004), 253-293. | DOI | MR | JFM
[3] Bates, P. W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6 (2006), 1-21. | DOI | MR | JFM
[4] Bates, P. W., Lu, K., Wang, B.: Tempered random attractors for parabolic equations in weighted spaces. J. Math. Phys. 54 (2013), Article ID 081505, 26 pages. | DOI | MR | JFM
[5] Brzeźniak, Z.: On Sobolev and Besov spaces regularity of Brownian paths. Stochastics Stochastics Rep. 56 (1996), 1-15. | DOI | MR | JFM
[6] Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), 245-295. | DOI | MR | JFM
[7] Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358 (2006), 5587-5629. | DOI | MR | JFM
[8] Brzeźniak, Z., Peszat, S.: Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process. Stud. Math. 137 (1999), 261-299. | DOI | MR | JFM
[9] Brzeźniak, Z., Neerven, J. van: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), 261-303. | DOI | MR | JFM
[10] Caraballo, T., Langa, J. A., Melnik, V. S., Valero, J.: Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal. 11 (2003), 153-201. | DOI | MR | JFM
[11] Cholewa, J. W., Dlotko, T.: Cauchy problems in weighted Lebesgue spaces. Czech. Math. J. 54 (2004), 991-1013. | DOI | MR | JFM
[12] Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equations 9 (1997), 307-341. | DOI | MR | JFM
[13] Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100 (1994), 365-393. | DOI | MR | JFM
[14] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 152, Cambridge University Press, Cambridge (2014). | DOI | MR | JFM
[15] Dawson, D. A., Salehi, H.: Spatially homogeneous random evolutions. J. Multivariate Anal. 10 (1980), 141-180. | DOI | MR | JFM
[16] Feireisl, E.: Bounded, locally compact global attractors for semilinear damped wave equations on {$\bold R^N$}. Differ. Integral Equ. 9 (1996), 1147-1156. | MR | JFM
[17] Flandoli, F., Schmalfuss, B.: Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stochastics Stochastics Rep. 59 (1996), 21-45. | DOI | MR | JFM
[18] Gel'fand, I. M., Vilenkin, N. Y.: Generalized Functions. Vol. 4. Applications of Harmonic Analysis. Academic Press, New York (1964). | MR | JFM
[19] Grasselli, M., Pražák, D., Schimperna, G.: Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories. J. Differ. Equations 249 (2010), 2287-2315. | DOI | MR | JFM
[20] Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. I. Math. Nachr. 167 (1994), 131-156. | DOI | MR | JFM
[21] Málek, J., Pražák, D.: Large time behavior via the method of $l$-trajectories. J. Differ. Equations 181 (2002), 243-279. | DOI | MR | JFM
[22] Ondreját, M.: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process. J. Evol. Equ. 4 (2004), 169-191. | DOI | MR | JFM
[23] Peszat, S., Zabczyk, J.: Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes Appl. 72 (1997), 187-204. | DOI | MR | JFM
[24] Peszat, S., Zabczyk, J.: Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 116 (2000), 421-443. | DOI | MR | JFM
[25] Tessitore, G., Zabczyk, J.: Invariant measures for stochastic heat equations. Probab. Math. Stat. 18 (1998), 271-287. | MR | JFM
[26] Neerven, J. M. A. M. van, Veraar, M. C., Weis, L.: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255 (2008), 940-993. | DOI | MR | JFM
[27] Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equations 253 (2012), 1544-1583. | DOI | MR | JFM
[28] Zelik, S. V.: The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's $\epsilon$-entropy. Math. Nachr. 232 (2001), 129-179. | DOI | MR | JFM
Cité par Sources :