Keywords: nonflat complex space form; real hypersurface; Hopf hypersurface; ruled real hypersurface; the tensor field $h$
@article{10_21136_CMJ_2020_0128_19,
author = {Okumura, Kazuhiro},
title = {A certain tensor on real hypersurfaces in a nonflat complex space form},
journal = {Czechoslovak Mathematical Journal},
pages = {1059--1077},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0128-19},
mrnumber = {4181796},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0128-19/}
}
TY - JOUR AU - Okumura, Kazuhiro TI - A certain tensor on real hypersurfaces in a nonflat complex space form JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1059 EP - 1077 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0128-19/ DO - 10.21136/CMJ.2020.0128-19 LA - en ID - 10_21136_CMJ_2020_0128_19 ER -
%0 Journal Article %A Okumura, Kazuhiro %T A certain tensor on real hypersurfaces in a nonflat complex space form %J Czechoslovak Mathematical Journal %D 2020 %P 1059-1077 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0128-19/ %R 10.21136/CMJ.2020.0128-19 %G en %F 10_21136_CMJ_2020_0128_19
Okumura, Kazuhiro. A certain tensor on real hypersurfaces in a nonflat complex space form. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1059-1077. doi: 10.21136/CMJ.2020.0128-19
[1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston (2010). | DOI | MR | JFM
[2] Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 395 (1989), 132-141. | DOI | MR | JFM
[3] Cecil, T. E., Ryan, P. J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 269 (1982), 481-499. | DOI | MR | JFM
[4] Cecil, T. E., Ryan, P. J.: Geometry of Hypersurfaces. Springer Monographs in Mathematics, Springer, New York (2015). | DOI | MR | JFM
[5] Cho, J. T., Inoguchi, J.-I.: Contact metric hypersurfaces in complex space form. Differential Geometry and Submanifolds and Its Related Topics, World Scientific, Hackensack (2012), 87-97. | DOI | MR | JFM
[6] Cho, J. T., Ki, U-H.: Jacobi operators on real hypersurfaces of a complex projective space. Tsukuba J. Math. 22 (1998), 145-156. | DOI | MR | JFM
[7] Ghosh, A.: Certain types of real hypersurfaces in complex space forms. J. Geom. 109 (2018), Article ID 10, 9 pages. | DOI | MR | JFM
[8] Ki, U-H., Kim, N-G.: Ruled real hypersurfaces of a complex space form. Acta Math. Sin., New Ser. 10 (1994), 401-409. | DOI | MR | JFM
[9] Kimura, M.: Real hypersurfaces and complex submanifolds in complex projective space. Trans. Am. Math. Soc. 296 (1986), 137-149. | DOI | MR | JFM
[10] Kimura, M.: Sectional curvatures of a holomorphic planes on a real hypersurface in $Pn(\mathbb{C})$. Math. Ann. 276 (1987), 487-497. | DOI | MR | JFM
[11] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space. Math. Z. 202 (1989), 299-311. | DOI | MR | JFM
[12] Maeda, S., Tanabe, H.: A characterization of homogeneous real hypersurfaces of type (C), (D) and (E) in a complex projective space. Differ. Geom. Appl. 54, Part A (2017), 2-10. | DOI | MR | JFM
[13] Montiel, S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Japan 37 (1985), 515-535. | DOI | MR | JFM
[14] Montiel, S., Romero, A.: On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20 (1986), 245-261. | DOI | MR | JFM
[15] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds T. E. Cecil et al. Mathematical Sciences Research Institute Publications 32, Cambridge University Press, Cambridge (1998), 233-305. | MR | JFM
[16] Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc. 212 (1975), 355-364. | DOI | MR | JFM
[17] Pérez, J. D., Santos, F. G., Suh, Y. J.: Real hypersurfaces in complex projective space whose structure Jacobi operator is $\mathbb{D}$-parallel. Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459-469. | DOI | MR | JFM
[18] Perrone, D.: Contact Riemannian manifolds satisfying $R(X, \xi)\cdot R=0$. Yokohama Math. J. 39 (1992), 141-149. | MR | JFM
[19] Takagi, R.: On homogeneous real hypersurfaces in a complex projective space. Osaka J. Math. 10 (1973), 495-506. | MR | JFM
[20] Theofanidis, T., Xenos, P. J.: Real hypersurfaces of non-flat complex space forms in terms of the Jacobi structure operator. Publ. Math. 87 (2015), 175-189. | DOI | MR | JFM
Cité par Sources :