Reducing subspaces of Toeplitz operators on Dirichlet type spaces of the bidisk
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 1-19
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The reducing subspaces of Toeplitz operators $T_{z_1^N\bar {z}_2^M}$ on Dirichlet type spaces of the ${\mathcal {D}}_\alpha ({\mathbb {D}}^2)$ are described, which extends the results for the corresponding operators on Bergman spaces of the bidisk.
The reducing subspaces of Toeplitz operators $T_{z_1^N\bar {z}_2^M}$ on Dirichlet type spaces of the ${\mathcal {D}}_\alpha ({\mathbb {D}}^2)$ are described, which extends the results for the corresponding operators on Bergman spaces of the bidisk.
DOI : 10.21136/CMJ.2020.0113-19
Classification : 47B35
Keywords: reducing subspace; Toeplitz operator; Dirichlet type space; bidisk
@article{10_21136_CMJ_2020_0113_19,
     author = {Lin, Hongzhao and Teng, Zhongming},
     title = {Reducing subspaces of {Toeplitz} operators on {Dirichlet} type spaces of the bidisk},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--19},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0113-19},
     mrnumber = {4226469},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0113-19/}
}
TY  - JOUR
AU  - Lin, Hongzhao
AU  - Teng, Zhongming
TI  - Reducing subspaces of Toeplitz operators on Dirichlet type spaces of the bidisk
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1
EP  - 19
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0113-19/
DO  - 10.21136/CMJ.2020.0113-19
LA  - en
ID  - 10_21136_CMJ_2020_0113_19
ER  - 
%0 Journal Article
%A Lin, Hongzhao
%A Teng, Zhongming
%T Reducing subspaces of Toeplitz operators on Dirichlet type spaces of the bidisk
%J Czechoslovak Mathematical Journal
%D 2021
%P 1-19
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0113-19/
%R 10.21136/CMJ.2020.0113-19
%G en
%F 10_21136_CMJ_2020_0113_19
Lin, Hongzhao; Teng, Zhongming. Reducing subspaces of Toeplitz operators on Dirichlet type spaces of the bidisk. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 1-19. doi: 10.21136/CMJ.2020.0113-19

[1] Albaseer, M., Lu, Y., Shi, Y.: Reducing subspaces for a class of Toeplitz operators on the Bergman space of the bidisk. Bull. Korean Math. Soc. 52 (2015), 1649-1660. | DOI | MR | JFM

[2] Deng, J., Lu, Y., Shi, Y.: Reducing subspaces for a class of non-analytic Toeplitz operators on the bidisk. J. Math. Anal. Appl. 445 (2017), 784-796. | DOI | MR | JFM

[3] Gu, C.: Reducing subspaces of non-analytic Toeplitz operators on the weighted Hardy and Dirichlet spaces of the bidisk. J. Math. Anal. Appl. 459 (2018), 980-996. | DOI | MR | JFM

[4] Guo, K., Huang, H.: On multiplication operators on the Bergman space: Similarity, unitary equivalence and reducing subspaces. J. Oper. Theory 65 (2011), 355-378. | MR | JFM

[5] Guo, K., Sun, S., Zheng, D., Zhong, C.: Multiplication operators on the Bergman space via the Hardy space of the bidisk. J. Reine Angew. Math. 628 (2009), 129-168. | DOI | MR | JFM

[6] Jupiter, D., Redett, D.: Multipliers on Dirichlet type spaces. Acta Sci. Math. 72 (2006), 179-203. | MR | JFM

[7] Lin, H.: Reducing subspaces of Toeplitz operators on the Dirichlet type spaces of the bidisk. Turk. J. Math. 42 (2018), 227-242. | DOI | MR | JFM

[8] Lu, Y., Zhou, X.: Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk. J. Math. Soc. Japan 62 (2010), 745-765. | DOI | MR | JFM

[9] Shi, Y., Lu, Y.: Reducing subspaces for Toeplitz operators on the polydisk. Bull. Korean Math. Soc. 50 (2013), 687-696. | DOI | MR | JFM

[10] Stessin, M., Zhu, K.: Reducing subspaces of weighted shift operators. Proc. Am. Math. Soc. 130 (2002), 2631-2639. | DOI | MR | JFM

[11] Zhou, X., Shi, Y., Lu, Y.: Invariant subspaces and reducing subspaces of weighted Bergman space over polydisc. Sci. Sin., Math. 41 (2011), 427-438. | DOI | MR

[12] Zhu, K.: Reducing subspaces for a class of multiplication operators. J. Lond. Math. Soc., II. Ser. 62 (2000), 553-568. | DOI | MR | JFM

Cité par Sources :