Algebraic properties of Toeplitz operators on weighted Bergman spaces
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 823-836 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk.
We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk.
DOI : 10.21136/CMJ.2020.0108-20
Classification : 47B35
Keywords: Bergman space; Toeplitz operator; Hankel operator; Berezin transform
@article{10_21136_CMJ_2020_0108_20,
     author = {Appuhamy, Amila},
     title = {Algebraic properties of {Toeplitz} operators on weighted {Bergman} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {823--836},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2020.0108-20},
     mrnumber = {4295248},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0108-20/}
}
TY  - JOUR
AU  - Appuhamy, Amila
TI  - Algebraic properties of Toeplitz operators on weighted Bergman spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 823
EP  - 836
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0108-20/
DO  - 10.21136/CMJ.2020.0108-20
LA  - en
ID  - 10_21136_CMJ_2020_0108_20
ER  - 
%0 Journal Article
%A Appuhamy, Amila
%T Algebraic properties of Toeplitz operators on weighted Bergman spaces
%J Czechoslovak Mathematical Journal
%D 2021
%P 823-836
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0108-20/
%R 10.21136/CMJ.2020.0108-20
%G en
%F 10_21136_CMJ_2020_0108_20
Appuhamy, Amila. Algebraic properties of Toeplitz operators on weighted Bergman spaces. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 823-836. doi: 10.21136/CMJ.2020.0108-20

[1] Ahern, P.: On the range of the Berezin transform. J. Funct. Anal. 215 (2004), 206-216. | DOI | MR | JFM

[2] Ahern, P., Čučković, Ž.: A theorem of Brown-Halmos type for Bergman space Toeplitz operators. J. Funct. Anal. 187 (2001), 200-210. | DOI | MR | JFM

[3] Ahern, P., Flores, M., Rudin, W.: An invariant volume-mean-value property. J. Funct. Anal. 111 (1993), 380-397. | DOI | MR | JFM

[4] Axler, S., Čučković, Ž.: Commuting Toeplitz operators with harmonic symbols. Integral Equations Oper. Theory 14 (1991), 1-12. | DOI | MR | JFM

[5] Axler, S., Čučković, Ž., Rao, N. V.: Commutants of analytic Toeplitz operators on the Bergman space. Proc. Am. Math. Soc. 128 (2000), 1951-1953. | DOI | MR | JFM

[6] Brown, A., Halmos, P. R.: Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213 (1963/64), 89-102. | DOI | MR | JFM

[7] Choe, B. R., Lee, Y. J., Nam, K., Zheng, D.: Products of Bergman space Toeplitz operators on the polydisk. Math. Ann. 337 (2007), 295-316. | DOI | MR | JFM

[8] Čučković, Ž., Li, B.: Berezin transform, Mellin transform and Toeplitz operators. Complex Anal. Oper. Theory 6 (2012), 189-218. | DOI | MR | JFM

[9] Čučković, Ž., Rao, N. V.: Mellin transform, monomial symbols, and commuting Toeplitz operators. J. Funct. Anal. 154 (1998), 195-214. | DOI | MR | JFM

[10] Čučković, Ž., Şahutoğlu, S.: Compactness of products of Hankel operators on the polydisk and some product domains in $C^2$. J. Math. Anal. Appl. 371 (2010), 341-346. | DOI | MR | JFM

[11] Rao, N. V.: Range of Berezin transform. Available at , 10 pages. | arXiv

[12] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). | DOI | MR | JFM

Cité par Sources :