Increasing sequences of sectorial forms
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1033-1046 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove convergence results for `increasing' sequences of sectorial forms. We treat both the case of closed forms and the case of non-closable forms.
We prove convergence results for `increasing' sequences of sectorial forms. We treat both the case of closed forms and the case of non-closable forms.
DOI : 10.21136/CMJ.2020.0101-19
Classification : 47A07
Keywords: sectorial form; strong resolvent convergence
@article{10_21136_CMJ_2020_0101_19,
     author = {Vogt, Hendrik and Voigt, J\"urgen},
     title = {Increasing sequences of sectorial forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1033--1046},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0101-19},
     mrnumber = {4181794},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0101-19/}
}
TY  - JOUR
AU  - Vogt, Hendrik
AU  - Voigt, Jürgen
TI  - Increasing sequences of sectorial forms
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1033
EP  - 1046
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0101-19/
DO  - 10.21136/CMJ.2020.0101-19
LA  - en
ID  - 10_21136_CMJ_2020_0101_19
ER  - 
%0 Journal Article
%A Vogt, Hendrik
%A Voigt, Jürgen
%T Increasing sequences of sectorial forms
%J Czechoslovak Mathematical Journal
%D 2020
%P 1033-1046
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0101-19/
%R 10.21136/CMJ.2020.0101-19
%G en
%F 10_21136_CMJ_2020_0101_19
Vogt, Hendrik; Voigt, Jürgen. Increasing sequences of sectorial forms. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1033-1046. doi: 10.21136/CMJ.2020.0101-19

[1] Arendt, W.: Approximation of degenerate semigroups. Taiwanese J. Math. 5 (2001), 279-295. | DOI | MR | JFM

[2] Arendt, W., Elst, A. F. M. ter: Sectorial forms and degenerate differential operators. J. Oper. Theory 67 (2012), 33-72. | MR | JFM

[3] Arendt, W., Nikolski, N.: Vector-valued holomorphic functions revisited. Math. Z. 234 (2000), 777-805. | DOI | MR | JFM

[4] Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11 (1961), 9-23. | DOI | MR | JFM

[5] Batty, C. J. K., Elst, A. F. M. ter: On series of sectorial forms. J. Evol. Equ. 14 (2014), 29-47. | DOI | MR | JFM

[6] Hassi, S., Sandovici, A., Snoo, H. S. V. de, Winkler, H.: Form sums of nonnegative selfadjoint operators. Acta Math. Hung. 111 (2006), 81-105. | DOI | MR | JFM

[7] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132, Springer, Berlin (1966). | DOI | MR | JFM

[8] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132, Springer, Berlin (1980). | MR | JFM

[9] Kunze, M.: Form Methods for Linear Evolution Problems on Hilbert Spaces: Diplomarbeit. Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm, Ulm (2005), Available at \brokenlink{ https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi {inst.020/abschlussarbeiten/diplomarbeit_kunze.pdf}}.

[10] Ouhabaz, E.-M.: Second order elliptic operators with essential spectrum $[0,\infty)$ on $L^p$. Commun. Partial Differ. Equations 20 (1995), 763-773. | DOI | MR | JFM

[11] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer, New York (1983). | DOI | MR | JFM

[12] Simon, B.: A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28 (1978), 377-385. | DOI | MR | JFM

[13] Vogt, H., Voigt, J.: Holomorphic families of forms, operators and {$C_0$}-semigroups. Monatsh. Math. 187 (2018), 375-380. | DOI | MR | JFM

Cité par Sources :