The linear syzygy graph of a monomial ideal and linear resolutions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 785-802
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For each squarefree monomial ideal $I\subset S = k[x_{1},\ldots , x_{n}] $, we associate a simple finite graph $G_I$ by using the first linear syzygies of $I$. The nodes of $G_I$ are the generators of $I$, and two vertices $u_i$ and $u_j$ are adjacent if there exist variables $x, y$ such that $xu_i = yu_j$. In the cases, where $G_I$ is a cycle or a tree, we show that $I$ has a linear resolution if and only if $I$ has linear quotients and if and only if $ I $ is variable-decomposable. In addition, with the same assumption on $G_I$, we characterize all squarefree monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension $2$ monomial ideals with a linear resolution. As another application of our results, we also characterize all Cohen-Macaulay simplicial complexes in the case, where $G_{\Delta }\cong G_{I_{\Delta ^{\vee }}}$ is a cycle or a tree.
DOI :
10.21136/CMJ.2020.0099-20
Classification :
13D02, 13F20, 13F55
Keywords: monomial ideal; linear resolution, linear quotient; variable-decomposability; Cohen-Macaulay simplicial complex
Keywords: monomial ideal; linear resolution, linear quotient; variable-decomposability; Cohen-Macaulay simplicial complex
@article{10_21136_CMJ_2020_0099_20,
author = {Manouchehri, Erfan and Soleyman Jahan, Ali},
title = {The linear syzygy graph of a monomial ideal and linear resolutions},
journal = {Czechoslovak Mathematical Journal},
pages = {785--802},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {2021},
doi = {10.21136/CMJ.2020.0099-20},
mrnumber = {4295245},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/}
}
TY - JOUR AU - Manouchehri, Erfan AU - Soleyman Jahan, Ali TI - The linear syzygy graph of a monomial ideal and linear resolutions JO - Czechoslovak Mathematical Journal PY - 2021 SP - 785 EP - 802 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/ DO - 10.21136/CMJ.2020.0099-20 LA - en ID - 10_21136_CMJ_2020_0099_20 ER -
%0 Journal Article %A Manouchehri, Erfan %A Soleyman Jahan, Ali %T The linear syzygy graph of a monomial ideal and linear resolutions %J Czechoslovak Mathematical Journal %D 2021 %P 785-802 %V 71 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/ %R 10.21136/CMJ.2020.0099-20 %G en %F 10_21136_CMJ_2020_0099_20
Manouchehri, Erfan; Soleyman Jahan, Ali. The linear syzygy graph of a monomial ideal and linear resolutions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 785-802. doi: 10.21136/CMJ.2020.0099-20
Cité par Sources :