The linear syzygy graph of a monomial ideal and linear resolutions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 785-802.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For each squarefree monomial ideal $I\subset S = k[x_{1},\ldots , x_{n}] $, we associate a simple finite graph $G_I$ by using the first linear syzygies of $I$. The nodes of $G_I$ are the generators of $I$, and two vertices $u_i$ and $u_j$ are adjacent if there exist variables $x, y$ such that $xu_i = yu_j$. In the cases, where $G_I$ is a cycle or a tree, we show that $I$ has a linear resolution if and only if $I$ has linear quotients and if and only if $ I $ is variable-decomposable. In addition, with the same assumption on $G_I$, we characterize all squarefree monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension $2$ monomial ideals with a linear resolution. As another application of our results, we also characterize all Cohen-Macaulay simplicial complexes in the case, where $G_{\Delta }\cong G_{I_{\Delta ^{\vee }}}$ is a cycle or a tree.
DOI : 10.21136/CMJ.2020.0099-20
Classification : 13D02, 13F20, 13F55
Keywords: monomial ideal; linear resolution, linear quotient; variable-decomposability; Cohen-Macaulay simplicial complex
@article{10_21136_CMJ_2020_0099_20,
     author = {Manouchehri, Erfan and Soleyman Jahan, Ali},
     title = {The linear syzygy graph of a monomial ideal and linear resolutions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {785--802},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2021},
     doi = {10.21136/CMJ.2020.0099-20},
     mrnumber = {4295245},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/}
}
TY  - JOUR
AU  - Manouchehri, Erfan
AU  - Soleyman Jahan, Ali
TI  - The linear syzygy graph of a monomial ideal and linear resolutions
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 785
EP  - 802
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/
DO  - 10.21136/CMJ.2020.0099-20
LA  - en
ID  - 10_21136_CMJ_2020_0099_20
ER  - 
%0 Journal Article
%A Manouchehri, Erfan
%A Soleyman Jahan, Ali
%T The linear syzygy graph of a monomial ideal and linear resolutions
%J Czechoslovak Mathematical Journal
%D 2021
%P 785-802
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/
%R 10.21136/CMJ.2020.0099-20
%G en
%F 10_21136_CMJ_2020_0099_20
Manouchehri, Erfan; Soleyman Jahan, Ali. The linear syzygy graph of a monomial ideal and linear resolutions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 785-802. doi : 10.21136/CMJ.2020.0099-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/

Cité par Sources :