Keywords: monomial ideal; linear resolution, linear quotient; variable-decomposability; Cohen-Macaulay simplicial complex
@article{10_21136_CMJ_2020_0099_20,
author = {Manouchehri, Erfan and Soleyman Jahan, Ali},
title = {The linear syzygy graph of a monomial ideal and linear resolutions},
journal = {Czechoslovak Mathematical Journal},
pages = {785--802},
year = {2021},
volume = {71},
number = {3},
doi = {10.21136/CMJ.2020.0099-20},
mrnumber = {4295245},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/}
}
TY - JOUR AU - Manouchehri, Erfan AU - Soleyman Jahan, Ali TI - The linear syzygy graph of a monomial ideal and linear resolutions JO - Czechoslovak Mathematical Journal PY - 2021 SP - 785 EP - 802 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/ DO - 10.21136/CMJ.2020.0099-20 LA - en ID - 10_21136_CMJ_2020_0099_20 ER -
%0 Journal Article %A Manouchehri, Erfan %A Soleyman Jahan, Ali %T The linear syzygy graph of a monomial ideal and linear resolutions %J Czechoslovak Mathematical Journal %D 2021 %P 785-802 %V 71 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/ %R 10.21136/CMJ.2020.0099-20 %G en %F 10_21136_CMJ_2020_0099_20
Manouchehri, Erfan; Soleyman Jahan, Ali. The linear syzygy graph of a monomial ideal and linear resolutions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 785-802. doi: 10.21136/CMJ.2020.0099-20
[1] Abbott, J., Bigatti, A. M., Lagorio, G.: CoCoA-5: A system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it/
[2] Ajdani, S. M., Jahan, A. S.: Vertex decomposability of 2-CM and Gorenstein simplicial complexes of codimension 3. Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 609-617. | DOI | MR | JFM
[3] Bigdeli, M., Herzog, J., Zaare-Nahandi, R.: On the index of powers of edge ideals. Commun. Algebra 46 (2018), 1080-1095. | DOI | MR | JFM
[4] Conca, A., Negri, E. De: $M$-sequences, graph ideals, and ladder ideals of linear type. J. Algebra 211 (1999), 599-624. | DOI | MR | JFM
[5] Conca, A., Herzog, J.: Castelnuovo-Mumford regularity of product of ideals. Collect. Math. 54 (2003), 137-152. | MR | JFM
[6] Eagon, J. A., Reiner, V.: Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebra 130 (1998), 265-275. | DOI | MR | JFM
[7] Emtander, E.: A class of hypergraphs that generalizes chordal graphs. Math. Scand. 106 (2010), 50-66. | DOI | MR | JFM
[8] Francisco, C. A., Tuyl, A. Van: Sequentially Cohen-Macaulay edge ideals. Proc. Am. Math. Soc. 135 (2007), 2327-2337. | DOI | MR | JFM
[9] Fröberg, R.: On Stanley-Reisner rings. Topics in Algebra. Part 2. Commutative Rings and Algebraic Groups Banach Center Publications 26. Polish Academy of Sciences, Institute of Mathematics, Warszaw (1990), 57-70. | MR | JFM
[10] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). | DOI | MR | JFM
[11] Herzog, J., Hibi, T., Zheng, X.: Monomial ideals whose powers have a linear resolution. Math. Scand. 95 (2004), 23-32. | DOI | MR | JFM
[12] Herzog, J., Takayama, Y.: Resolutions by mapping cones. Homology Homotopy Appl. 4 (2002), 277-294. | DOI | MR | JFM
[13] Morales, M.: Simplicial ideals, 2-linear ideals and arithmetical rank. J. Algebra 324 (2010), 3431-3456. | DOI | MR | JFM
[14] Rahmati-Asghar, R., Yassemi, S.: $k$-decomposable monomial ideals. Algebra Colloq. 22 (2015), 745-756. | DOI | MR | JFM
[15] Madani, S. Saeedi, Kiani, D., Terai, N.: Sequentially Cohen-Macaulay path ideals of cycles. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 353-363. | MR | JFM
[16] Woodroofe, R.: Chordal and sequentially Cohen-Macaulay clutters. Electron. J. Comb. 18 (2011), Article ID P208, 20 pages. | MR | JFM
Cité par Sources :