The linear syzygy graph of a monomial ideal and linear resolutions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 785-802
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For each squarefree monomial ideal $I\subset S = k[x_{1},\ldots , x_{n}] $, we associate a simple finite graph $G_I$ by using the first linear syzygies of $I$. The nodes of $G_I$ are the generators of $I$, and two vertices $u_i$ and $u_j$ are adjacent if there exist variables $x, y$ such that $xu_i = yu_j$. In the cases, where $G_I$ is a cycle or a tree, we show that $I$ has a linear resolution if and only if $I$ has linear quotients and if and only if $ I $ is variable-decomposable. In addition, with the same assumption on $G_I$, we characterize all squarefree monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension $2$ monomial ideals with a linear resolution. As another application of our results, we also characterize all Cohen-Macaulay simplicial complexes in the case, where $G_{\Delta }\cong G_{I_{\Delta ^{\vee }}}$ is a cycle or a tree.
For each squarefree monomial ideal $I\subset S = k[x_{1},\ldots , x_{n}] $, we associate a simple finite graph $G_I$ by using the first linear syzygies of $I$. The nodes of $G_I$ are the generators of $I$, and two vertices $u_i$ and $u_j$ are adjacent if there exist variables $x, y$ such that $xu_i = yu_j$. In the cases, where $G_I$ is a cycle or a tree, we show that $I$ has a linear resolution if and only if $I$ has linear quotients and if and only if $ I $ is variable-decomposable. In addition, with the same assumption on $G_I$, we characterize all squarefree monomial ideals with a linear resolution. Using our results, we characterize all Cohen-Macaulay codimension $2$ monomial ideals with a linear resolution. As another application of our results, we also characterize all Cohen-Macaulay simplicial complexes in the case, where $G_{\Delta }\cong G_{I_{\Delta ^{\vee }}}$ is a cycle or a tree.
DOI : 10.21136/CMJ.2020.0099-20
Classification : 13D02, 13F20, 13F55
Keywords: monomial ideal; linear resolution, linear quotient; variable-decomposability; Cohen-Macaulay simplicial complex
@article{10_21136_CMJ_2020_0099_20,
     author = {Manouchehri, Erfan and Soleyman Jahan, Ali},
     title = {The linear syzygy graph of a monomial ideal and linear resolutions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {785--802},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2020.0099-20},
     mrnumber = {4295245},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/}
}
TY  - JOUR
AU  - Manouchehri, Erfan
AU  - Soleyman Jahan, Ali
TI  - The linear syzygy graph of a monomial ideal and linear resolutions
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 785
EP  - 802
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/
DO  - 10.21136/CMJ.2020.0099-20
LA  - en
ID  - 10_21136_CMJ_2020_0099_20
ER  - 
%0 Journal Article
%A Manouchehri, Erfan
%A Soleyman Jahan, Ali
%T The linear syzygy graph of a monomial ideal and linear resolutions
%J Czechoslovak Mathematical Journal
%D 2021
%P 785-802
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0099-20/
%R 10.21136/CMJ.2020.0099-20
%G en
%F 10_21136_CMJ_2020_0099_20
Manouchehri, Erfan; Soleyman Jahan, Ali. The linear syzygy graph of a monomial ideal and linear resolutions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 785-802. doi: 10.21136/CMJ.2020.0099-20

[1] Abbott, J., Bigatti, A. M., Lagorio, G.: CoCoA-5: A system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it/

[2] Ajdani, S. M., Jahan, A. S.: Vertex decomposability of 2-CM and Gorenstein simplicial complexes of codimension 3. Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 609-617. | DOI | MR | JFM

[3] Bigdeli, M., Herzog, J., Zaare-Nahandi, R.: On the index of powers of edge ideals. Commun. Algebra 46 (2018), 1080-1095. | DOI | MR | JFM

[4] Conca, A., Negri, E. De: $M$-sequences, graph ideals, and ladder ideals of linear type. J. Algebra 211 (1999), 599-624. | DOI | MR | JFM

[5] Conca, A., Herzog, J.: Castelnuovo-Mumford regularity of product of ideals. Collect. Math. 54 (2003), 137-152. | MR | JFM

[6] Eagon, J. A., Reiner, V.: Resolutions of Stanley-Reisner rings and Alexander duality. J. Pure Appl. Algebra 130 (1998), 265-275. | DOI | MR | JFM

[7] Emtander, E.: A class of hypergraphs that generalizes chordal graphs. Math. Scand. 106 (2010), 50-66. | DOI | MR | JFM

[8] Francisco, C. A., Tuyl, A. Van: Sequentially Cohen-Macaulay edge ideals. Proc. Am. Math. Soc. 135 (2007), 2327-2337. | DOI | MR | JFM

[9] Fröberg, R.: On Stanley-Reisner rings. Topics in Algebra. Part 2. Commutative Rings and Algebraic Groups Banach Center Publications 26. Polish Academy of Sciences, Institute of Mathematics, Warszaw (1990), 57-70. | MR | JFM

[10] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). | DOI | MR | JFM

[11] Herzog, J., Hibi, T., Zheng, X.: Monomial ideals whose powers have a linear resolution. Math. Scand. 95 (2004), 23-32. | DOI | MR | JFM

[12] Herzog, J., Takayama, Y.: Resolutions by mapping cones. Homology Homotopy Appl. 4 (2002), 277-294. | DOI | MR | JFM

[13] Morales, M.: Simplicial ideals, 2-linear ideals and arithmetical rank. J. Algebra 324 (2010), 3431-3456. | DOI | MR | JFM

[14] Rahmati-Asghar, R., Yassemi, S.: $k$-decomposable monomial ideals. Algebra Colloq. 22 (2015), 745-756. | DOI | MR | JFM

[15] Madani, S. Saeedi, Kiani, D., Terai, N.: Sequentially Cohen-Macaulay path ideals of cycles. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 353-363. | MR | JFM

[16] Woodroofe, R.: Chordal and sequentially Cohen-Macaulay clutters. Electron. J. Comb. 18 (2011), Article ID P208, 20 pages. | MR | JFM

Cité par Sources :