Maximal non valuation domains in an integral domain
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1019-1032.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^{\prime _S} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^{\prime _S},S)$ is established.
DOI : 10.21136/CMJ.2020.0098-19
Classification : 13B02, 13B22, 13B30, 13F30, 13G05
Keywords: maximal non valuation domain; valuation subring; integrally closed subring
@article{10_21136_CMJ_2020_0098_19,
     author = {Kumar, Rahul and Gaur, Atul},
     title = {Maximal non valuation domains in an integral domain},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1019--1032},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.21136/CMJ.2020.0098-19},
     mrnumber = {4181793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/}
}
TY  - JOUR
AU  - Kumar, Rahul
AU  - Gaur, Atul
TI  - Maximal non valuation domains in an integral domain
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1019
EP  - 1032
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/
DO  - 10.21136/CMJ.2020.0098-19
LA  - en
ID  - 10_21136_CMJ_2020_0098_19
ER  - 
%0 Journal Article
%A Kumar, Rahul
%A Gaur, Atul
%T Maximal non valuation domains in an integral domain
%J Czechoslovak Mathematical Journal
%D 2020
%P 1019-1032
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/
%R 10.21136/CMJ.2020.0098-19
%G en
%F 10_21136_CMJ_2020_0098_19
Kumar, Rahul; Gaur, Atul. Maximal non valuation domains in an integral domain. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1019-1032. doi : 10.21136/CMJ.2020.0098-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/

Cité par Sources :