Maximal non valuation domains in an integral domain
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1019-1032
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^{\prime _S} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^{\prime _S},S)$ is established.
Let $R$ be a commutative ring with unity. The notion of maximal non valuation domain in an integral domain is introduced and characterized. A proper subring $R$ of an integral domain $S$ is called a maximal non valuation domain in $S$ if $R$ is not a valuation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a valuation subring of $S$. For a local domain $S$, the equivalence of an integrally closed maximal non VD in $S$ and a maximal non local subring of $S$ is established. The relation between $\dim (R,S)$ and the number of rings between $R$ and $S$ is given when $R$ is a maximal non VD in $S$ and $\dim (R,S)$ is finite. For a maximal non VD $R$ in $S$ such that $R\subset R^{\prime _S} \subset S$ and $\dim (R,S)$ is finite, the equality of $\dim (R,S)$ and $\dim (R^{\prime _S},S)$ is established.
DOI : 10.21136/CMJ.2020.0098-19
Classification : 13B02, 13B22, 13B30, 13F30, 13G05
Keywords: maximal non valuation domain; valuation subring; integrally closed subring
@article{10_21136_CMJ_2020_0098_19,
     author = {Kumar, Rahul and Gaur, Atul},
     title = {Maximal non valuation domains in an integral domain},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1019--1032},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0098-19},
     mrnumber = {4181793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/}
}
TY  - JOUR
AU  - Kumar, Rahul
AU  - Gaur, Atul
TI  - Maximal non valuation domains in an integral domain
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1019
EP  - 1032
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/
DO  - 10.21136/CMJ.2020.0098-19
LA  - en
ID  - 10_21136_CMJ_2020_0098_19
ER  - 
%0 Journal Article
%A Kumar, Rahul
%A Gaur, Atul
%T Maximal non valuation domains in an integral domain
%J Czechoslovak Mathematical Journal
%D 2020
%P 1019-1032
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/
%R 10.21136/CMJ.2020.0098-19
%G en
%F 10_21136_CMJ_2020_0098_19
Kumar, Rahul; Gaur, Atul. Maximal non valuation domains in an integral domain. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1019-1032. doi: 10.21136/CMJ.2020.0098-19

[1] Akiba, T.: A note on AV-domains. Bull. Kyoto Univ. Educ., Ser. B 31 (1967), 1-3. | MR | JFM

[2] Ayache, A.: Some finiteness chain conditions on the set of intermediate rings. J. Algebra 323 (2010), 3111-3123. | DOI | MR | JFM

[3] Ayache, A.: The set of indeterminate rings of a normal pair as a partially ordered set. Ric. Mat. 60 (2011), 193-201. | DOI | MR | JFM

[4] Ayache, A., Echi, O.: Valuation and pseudovaluation subrings of an integral domain. Commun. Algebra 34 (2006), 2467-2483. | DOI | MR | JFM

[5] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. | DOI | MR | JFM

[6] Nasr, M. Ben, Jarboui, N.: Maximal non-Jaffard subrings of a field. Publ. Mat., Barc. 44 (2000), 157-175. | DOI | MR | JFM

[7] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings. Houston J. Math. 37 (2011), 47-59. | MR | JFM

[8] Davis, E. D.: Overrings of commutative rings III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. | DOI | MR | JFM

[9] Dechéne, L. I.: Adjacent Extensions of Rings: PhD Dissertation. University of California, Riverside (1978). | MR

[10] Dobbs, D. E.: Divided rings and going-down. Pac. J. Math. 67 (1976), 353-363. | DOI | MR | JFM

[11] Dobbs, D. E., Fontana, M.: Universally incomparable ring-homomorphisms. Bull. Aust. Math. Soc. 29 (1984), 289-302. | DOI | MR | JFM

[12] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. | DOI | MR | JFM

[13] Fontana, M.: Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. | DOI | MR | JFM

[14] Gilbert, M. S.: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings: PhD Dissertation. University of Tennessee, Knoxville (1996). | MR

[15] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. | DOI | MR | JFM

[16] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains. Pac. J. Math. 75 (1978), 137-147. | DOI | MR | JFM

[17] Jarboui, N., Trabelsi, S.: Some results about proper overrings of pseudo-valuation domains. J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. | DOI | MR | JFM

[18] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings. J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. | DOI | MR | JFM

[19] Mimouni, A., Samman, M.: Semistar-operations on valuation domains. Focus on Commutative Rings Research Nova Science Publishers, New York (2006), 131-141. | MR | JFM

[20] Modica, M. L.: Maximal Subrings: PhD Dissertation. University of Chicago, Chicago (1975). | MR

Cité par Sources :