Keywords: maximal non valuation domain; valuation subring; integrally closed subring
@article{10_21136_CMJ_2020_0098_19,
author = {Kumar, Rahul and Gaur, Atul},
title = {Maximal non valuation domains in an integral domain},
journal = {Czechoslovak Mathematical Journal},
pages = {1019--1032},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0098-19},
mrnumber = {4181793},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/}
}
TY - JOUR AU - Kumar, Rahul AU - Gaur, Atul TI - Maximal non valuation domains in an integral domain JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1019 EP - 1032 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/ DO - 10.21136/CMJ.2020.0098-19 LA - en ID - 10_21136_CMJ_2020_0098_19 ER -
%0 Journal Article %A Kumar, Rahul %A Gaur, Atul %T Maximal non valuation domains in an integral domain %J Czechoslovak Mathematical Journal %D 2020 %P 1019-1032 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0098-19/ %R 10.21136/CMJ.2020.0098-19 %G en %F 10_21136_CMJ_2020_0098_19
Kumar, Rahul; Gaur, Atul. Maximal non valuation domains in an integral domain. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1019-1032. doi: 10.21136/CMJ.2020.0098-19
[1] Akiba, T.: A note on AV-domains. Bull. Kyoto Univ. Educ., Ser. B 31 (1967), 1-3. | MR | JFM
[2] Ayache, A.: Some finiteness chain conditions on the set of intermediate rings. J. Algebra 323 (2010), 3111-3123. | DOI | MR | JFM
[3] Ayache, A.: The set of indeterminate rings of a normal pair as a partially ordered set. Ric. Mat. 60 (2011), 193-201. | DOI | MR | JFM
[4] Ayache, A., Echi, O.: Valuation and pseudovaluation subrings of an integral domain. Commun. Algebra 34 (2006), 2467-2483. | DOI | MR | JFM
[5] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. | DOI | MR | JFM
[6] Nasr, M. Ben, Jarboui, N.: Maximal non-Jaffard subrings of a field. Publ. Mat., Barc. 44 (2000), 157-175. | DOI | MR | JFM
[7] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings. Houston J. Math. 37 (2011), 47-59. | MR | JFM
[8] Davis, E. D.: Overrings of commutative rings III: Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. | DOI | MR | JFM
[9] Dechéne, L. I.: Adjacent Extensions of Rings: PhD Dissertation. University of California, Riverside (1978). | MR
[10] Dobbs, D. E.: Divided rings and going-down. Pac. J. Math. 67 (1976), 353-363. | DOI | MR | JFM
[11] Dobbs, D. E., Fontana, M.: Universally incomparable ring-homomorphisms. Bull. Aust. Math. Soc. 29 (1984), 289-302. | DOI | MR | JFM
[12] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP. J. Algebra 371 (2012), 391-429. | DOI | MR | JFM
[13] Fontana, M.: Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., IV. Ser. 123 (1980), 331-355. | DOI | MR | JFM
[14] Gilbert, M. S.: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings: PhD Dissertation. University of Tennessee, Knoxville (1996). | MR
[15] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain. Proc. Am. Math. Soc. 131 (2003), 2337-2346. | DOI | MR | JFM
[16] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains. Pac. J. Math. 75 (1978), 137-147. | DOI | MR | JFM
[17] Jarboui, N., Trabelsi, S.: Some results about proper overrings of pseudo-valuation domains. J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. | DOI | MR | JFM
[18] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings. J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. | DOI | MR | JFM
[19] Mimouni, A., Samman, M.: Semistar-operations on valuation domains. Focus on Commutative Rings Research Nova Science Publishers, New York (2006), 131-141. | MR | JFM
[20] Modica, M. L.: Maximal Subrings: PhD Dissertation. University of Chicago, Chicago (1975). | MR
Cité par Sources :