$S$-depth on $ZD$-modules and local cohomology
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 755-764
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a Noetherian ring, and $I$ and $J$ be two ideals of $R$. Let $S$ be a Serre subcategory of the category of $R$-modules satisfying the condition $C_I$ and $M$ be a $ZD$-module. As a generalization of the $S$-${\rm depth}(I, M)$ and ${\rm depth}(I, J, M)$, the $S$-${\rm depth}$ of $(I, J)$ on $M$ is defined as $S$-${\rm depth}(I, J, M)=\inf \{S$-${\rm depth}(\frak {a}, M) \colon \frak {a}\in \widetilde {\rm W}(I,J)\}$, and some properties of this concept are investigated. The relations between $S$-${\rm depth}(I, J, M)$ and $H^{i}_{I,J}(M)$ are studied, and it is proved that $S$-${\rm depth}(I, J, M)=\inf \{i \colon H^{i}_{I,J}(M)\notin S\}$, where $S$ is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let ${\rm Supp}_R H^{i}_{I,J}(M)$ be a finite subset of ${\rm Max}(R)$ for all $i
Let $R$ be a Noetherian ring, and $I$ and $J$ be two ideals of $R$. Let $S$ be a Serre subcategory of the category of $R$-modules satisfying the condition $C_I$ and $M$ be a $ZD$-module. As a generalization of the $S$-${\rm depth}(I, M)$ and ${\rm depth}(I, J, M)$, the $S$-${\rm depth}$ of $(I, J)$ on $M$ is defined as $S$-${\rm depth}(I, J, M)=\inf \{S$-${\rm depth}(\frak {a}, M) \colon \frak {a}\in \widetilde {\rm W}(I,J)\}$, and some properties of this concept are investigated. The relations between $S$-${\rm depth}(I, J, M)$ and $H^{i}_{I,J}(M)$ are studied, and it is proved that $S$-${\rm depth}(I, J, M)=\inf \{i \colon H^{i}_{I,J}(M)\notin S\}$, where $S$ is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let ${\rm Supp}_R H^{i}_{I,J}(M)$ be a finite subset of ${\rm Max}(R)$ for all $i$, where $M$ is an arbitrary $R$-module and $t$ is an integer. It is shown that there are distinct maximal ideals $\frak m_1, \frak m_2,\ldots ,\frak m_k\in {\rm W}(I, J)$ such that $H^{i}_{I,J}(M)\cong H^{i}_{\frak m_1}(M)\oplus H^{i}_{\frak m_2}(M)\oplus \cdots \oplus H^{i}_{\frak m_k}(M)$ for all $i$.
DOI : 10.21136/CMJ.2020.0088-20
Classification : 13C15, 13C60, 13D45
Keywords: depth; local cohomology; Serre subcategory; $ZD$-module
@article{10_21136_CMJ_2020_0088_20,
     author = {Lotfi Parsa, Morteza},
     title = {$S$-depth on $ZD$-modules and local cohomology},
     journal = {Czechoslovak Mathematical Journal},
     pages = {755--764},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2020.0088-20},
     mrnumber = {4295243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-20/}
}
TY  - JOUR
AU  - Lotfi Parsa, Morteza
TI  - $S$-depth on $ZD$-modules and local cohomology
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 755
EP  - 764
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-20/
DO  - 10.21136/CMJ.2020.0088-20
LA  - en
ID  - 10_21136_CMJ_2020_0088_20
ER  - 
%0 Journal Article
%A Lotfi Parsa, Morteza
%T $S$-depth on $ZD$-modules and local cohomology
%J Czechoslovak Mathematical Journal
%D 2021
%P 755-764
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-20/
%R 10.21136/CMJ.2020.0088-20
%G en
%F 10_21136_CMJ_2020_0088_20
Lotfi Parsa, Morteza. $S$-depth on $ZD$-modules and local cohomology. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 755-764. doi: 10.21136/CMJ.2020.0088-20

[1] Aghapournahr, M., Ahmadi-Amoli, K., Sadeghi, M. Y.: The concept of $(I,J)$-Cohen-Macaulay modules. J. Algebr. Syst. 3 (2015), 1-10. | DOI | MR

[2] Aghapournahr, M., Melkersson, L.: Local cohomology and Serre subcategories. J. Algebra 320 (2008), 1275-1287. | DOI | MR | JFM

[3] Asadollahi, M., Khashyarmanesh, K., Salarian, S.: A generalization of the cofiniteness problem in local cohomology modules. J. Aust. Math. Soc. 75 (2003), 313-324. | DOI | MR | JFM

[4] Bijan-Zadeh, M. H.: Torsion theories and local cohomology over commutative Noetherian rings. J. London Math. Soc., II. Ser. 19 (1979), 402-410. | DOI | MR | JFM

[5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[6] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[7] Chu, L., Wang, Q.: Some results on local cohomology modules defined by a pair of ideals. J. Math. Kyoto Univ. 49 (2009), 193-200. | DOI | MR | JFM

[8] Divaani-Aazar, K., Esmkhani, M. A.: Artinianness of local cohomology modules of ZD-modules. Commun. Algebra 33 (2005), 2857-2863. | DOI | MR | JFM

[9] E. G. Evans, Jr.: Zero divisors in Noetherian-like rings. Trans. Am. Math. Soc. 155 (1971), 505-512. | DOI | MR | JFM

[10] Parsa, M. Lotfi: Depth of an ideal on ZD-modules. Publ. Inst. Math., Nouv. Sér. 106(120) (2019), 29-37. | DOI | MR

[11] Parsa, M. Lotfi, Payrovi, S.: Lower bounds for local cohomology modules with respect to a pair of ideals. Algebra Colloq. 23 (2016), 329-334. | DOI | MR | JFM

[12] Payrovi, S., Parsa, M. Lotfi: Finiteness of local cohomology modules defined by a pair of ideals. Commun. Algebra 41 (2013), 627-637. | DOI | MR | JFM

[13] Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra 213 (2009), 582-600. | DOI | MR | JFM

Cité par Sources :