Keywords: Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space
@article{10_21136_CMJ_2020_0088_19,
author = {Datt, Gopal and Pandey, Shesh Kumar},
title = {Compression of slant {Toeplitz} operators on the {Hardy} space of $n$-dimensional torus},
journal = {Czechoslovak Mathematical Journal},
pages = {997--1018},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0088-19},
mrnumber = {4181792},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/}
}
TY - JOUR AU - Datt, Gopal AU - Pandey, Shesh Kumar TI - Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus JO - Czechoslovak Mathematical Journal PY - 2020 SP - 997 EP - 1018 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/ DO - 10.21136/CMJ.2020.0088-19 LA - en ID - 10_21136_CMJ_2020_0088_19 ER -
%0 Journal Article %A Datt, Gopal %A Pandey, Shesh Kumar %T Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus %J Czechoslovak Mathematical Journal %D 2020 %P 997-1018 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/ %R 10.21136/CMJ.2020.0088-19 %G en %F 10_21136_CMJ_2020_0088_19
Datt, Gopal; Pandey, Shesh Kumar. Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 997-1018. doi: 10.21136/CMJ.2020.0088-19
[1] Arora, S. C., Batra, R.: On generalized slant Toeplitz operators. Indian J. Math. 45 (2003), 121-134. | MR | JFM
[2] Arora, S. C., Batra, R.: Generalized slant Toeplitz operators on $H^2$. Math. Nachr. 278 (2005), 347-355. | DOI | MR | JFM
[3] Datt, G., Pandey, S. K.: Slant Toeplitz operators on Lebesgue space of $n$-dimensional torus. (to appear) in Hokkaido Math. J.
[4] Ding, X., Sun, S., Zheng, D.: Commuting Toeplitz operators on the bidisk. J. Funct. Anal. 263 (2012), 3333-3357. | DOI | MR | JFM
[5] Ho, M. C.: Spectra of slant Toeplitz operators with continuous symbol. Mich. Math. J. 44 (1997), 157-166. | DOI | MR | JFM
[6] Halmos, P. R.: Hilbert Space Problem Book. Graduate Texts in Mathematics 19. Springer, New York (1982). | DOI | MR | JFM
[7] Ho, M. C.: Spectral Properties of Slant Toeplitz Operators: Ph.D. Thesis. Purdue-University, West Lafayette (1996). | MR
[8] Lu, Y. F., Zhang, B.: Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk. J. Math. Res. Expo. 30 (2010), 205-216. | DOI | MR | JFM
[9] Maji, A., Sarkar, J., Sarkar, S.: Toeplitz and asymptotic Toeplitz operators on $H^2(\mathbb{D}^n)$. Bull. Sci. Math. 146 (2018), 33-49. | DOI | MR | JFM
[10] Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003). | DOI | MR | JFM
[11] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). | DOI | MR | JFM
Cité par Sources :