Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 997-1018
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$.
This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$.
DOI : 10.21136/CMJ.2020.0088-19
Classification : 47B35
Keywords: Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space
@article{10_21136_CMJ_2020_0088_19,
     author = {Datt, Gopal and Pandey, Shesh Kumar},
     title = {Compression of slant {Toeplitz} operators on the {Hardy} space of $n$-dimensional torus},
     journal = {Czechoslovak Mathematical Journal},
     pages = {997--1018},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0088-19},
     mrnumber = {4181792},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/}
}
TY  - JOUR
AU  - Datt, Gopal
AU  - Pandey, Shesh Kumar
TI  - Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 997
EP  - 1018
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/
DO  - 10.21136/CMJ.2020.0088-19
LA  - en
ID  - 10_21136_CMJ_2020_0088_19
ER  - 
%0 Journal Article
%A Datt, Gopal
%A Pandey, Shesh Kumar
%T Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus
%J Czechoslovak Mathematical Journal
%D 2020
%P 997-1018
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/
%R 10.21136/CMJ.2020.0088-19
%G en
%F 10_21136_CMJ_2020_0088_19
Datt, Gopal; Pandey, Shesh Kumar. Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 997-1018. doi: 10.21136/CMJ.2020.0088-19

[1] Arora, S. C., Batra, R.: On generalized slant Toeplitz operators. Indian J. Math. 45 (2003), 121-134. | MR | JFM

[2] Arora, S. C., Batra, R.: Generalized slant Toeplitz operators on $H^2$. Math. Nachr. 278 (2005), 347-355. | DOI | MR | JFM

[3] Datt, G., Pandey, S. K.: Slant Toeplitz operators on Lebesgue space of $n$-dimensional torus. (to appear) in Hokkaido Math. J.

[4] Ding, X., Sun, S., Zheng, D.: Commuting Toeplitz operators on the bidisk. J. Funct. Anal. 263 (2012), 3333-3357. | DOI | MR | JFM

[5] Ho, M. C.: Spectra of slant Toeplitz operators with continuous symbol. Mich. Math. J. 44 (1997), 157-166. | DOI | MR | JFM

[6] Halmos, P. R.: Hilbert Space Problem Book. Graduate Texts in Mathematics 19. Springer, New York (1982). | DOI | MR | JFM

[7] Ho, M. C.: Spectral Properties of Slant Toeplitz Operators: Ph.D. Thesis. Purdue-University, West Lafayette (1996). | MR

[8] Lu, Y. F., Zhang, B.: Commuting Hankel and Toeplitz operators on the Hardy space of the bidisk. J. Math. Res. Expo. 30 (2010), 205-216. | DOI | MR | JFM

[9] Maji, A., Sarkar, J., Sarkar, S.: Toeplitz and asymptotic Toeplitz operators on $H^2(\mathbb{D}^n)$. Bull. Sci. Math. 146 (2018), 33-49. | DOI | MR | JFM

[10] Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003). | DOI | MR | JFM

[11] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). | DOI | MR | JFM

Cité par Sources :