Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 997-1018
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$.
This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$.
DOI :
10.21136/CMJ.2020.0088-19
Classification :
47B35
Keywords: Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space
Keywords: Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space
@article{10_21136_CMJ_2020_0088_19,
author = {Datt, Gopal and Pandey, Shesh Kumar},
title = {Compression of slant {Toeplitz} operators on the {Hardy} space of $n$-dimensional torus},
journal = {Czechoslovak Mathematical Journal},
pages = {997--1018},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0088-19},
mrnumber = {4181792},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/}
}
TY - JOUR AU - Datt, Gopal AU - Pandey, Shesh Kumar TI - Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus JO - Czechoslovak Mathematical Journal PY - 2020 SP - 997 EP - 1018 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/ DO - 10.21136/CMJ.2020.0088-19 LA - en ID - 10_21136_CMJ_2020_0088_19 ER -
%0 Journal Article %A Datt, Gopal %A Pandey, Shesh Kumar %T Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus %J Czechoslovak Mathematical Journal %D 2020 %P 997-1018 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0088-19/ %R 10.21136/CMJ.2020.0088-19 %G en %F 10_21136_CMJ_2020_0088_19
Datt, Gopal; Pandey, Shesh Kumar. Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 997-1018. doi: 10.21136/CMJ.2020.0088-19
Cité par Sources :