The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 979-995
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.
DOI :
10.21136/CMJ.2020.0082-19
Classification :
11R18, 14H52
Keywords: torsion group; elliptic curve; cyclotomic field
Keywords: torsion group; elliptic curve; cyclotomic field
@article{10_21136_CMJ_2020_0082_19,
author = {Dimabayao, Jerome Tomagan},
title = {The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$},
journal = {Czechoslovak Mathematical Journal},
pages = {979--995},
publisher = {mathdoc},
volume = {70},
number = {4},
year = {2020},
doi = {10.21136/CMJ.2020.0082-19},
mrnumber = {4181791},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/}
}
TY - JOUR
AU - Dimabayao, Jerome Tomagan
TI - The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
JO - Czechoslovak Mathematical Journal
PY - 2020
SP - 979
EP - 995
VL - 70
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/
DO - 10.21136/CMJ.2020.0082-19
LA - en
ID - 10_21136_CMJ_2020_0082_19
ER -
%0 Journal Article
%A Dimabayao, Jerome Tomagan
%T The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
%J Czechoslovak Mathematical Journal
%D 2020
%P 979-995
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/
%R 10.21136/CMJ.2020.0082-19
%G en
%F 10_21136_CMJ_2020_0082_19
Dimabayao, Jerome Tomagan. The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 979-995. doi: 10.21136/CMJ.2020.0082-19
Cité par Sources :