The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 979-995 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.
We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.
DOI : 10.21136/CMJ.2020.0082-19
Classification : 11R18, 14H52
Keywords: torsion group; elliptic curve; cyclotomic field
@article{10_21136_CMJ_2020_0082_19,
     author = {Dimabayao, Jerome Tomagan},
     title = {The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {979--995},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0082-19},
     mrnumber = {4181791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/}
}
TY  - JOUR
AU  - Dimabayao, Jerome Tomagan
TI  - The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 979
EP  - 995
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/
DO  - 10.21136/CMJ.2020.0082-19
LA  - en
ID  - 10_21136_CMJ_2020_0082_19
ER  - 
%0 Journal Article
%A Dimabayao, Jerome Tomagan
%T The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
%J Czechoslovak Mathematical Journal
%D 2020
%P 979-995
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/
%R 10.21136/CMJ.2020.0082-19
%G en
%F 10_21136_CMJ_2020_0082_19
Dimabayao, Jerome Tomagan. The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 979-995. doi: 10.21136/CMJ.2020.0082-19

[1] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | JFM

[2] Bourdon, A., Clark, P. L.: Torsion points and Galois representations on CM elliptic curves. Pac. J. Math. 305 (2020), 43-88. | DOI | MR | JFM

[3] Daniels, H. B., Lozano-Robledo, Á., Najman, F., Sutherland, A. V.: Torsion subgroups of rational elliptic curves over the compositum of all cubic fields. Math. Comput. 87 (2018), 425-458. | DOI | MR | JFM

[4] Dey, P. K.: Elliptic curves with rank 0 over number fields. Funct. Approximatio Comment. Math. 56 (2017), 25-37. | DOI | MR | JFM

[5] Dey, P. K.: Torsion groups of a family of elliptic curves over number fields. Czech. Math. J. 69 (2019), 161-171. | DOI | MR | JFM

[6] Frey, G., Jarden, M.: Approximation theory and the rank of abelian varieties over large algebraic fields. Proc. Lond. Math. Soc., III. Ser. 28 (1974), 112-128. | DOI | MR | JFM

[7] Fujita, Y.: Torsion subgroups of elliptic curves with non-cyclic torsion over $\mathbb{Q}$ in elementary abelian 2-extensions of $\mathbb{Q}$. Acta Arith. 115 (2004), 29-45. | DOI | MR | JFM

[8] Fujita, Y.: Torsion subgroups of elliptic curves in elementary abelian 2-extensions of $\mathbb{Q}$. J. Number Theory 114 (2005), 124-134. | DOI | MR | JFM

[9] Gal, I., Grizzard, R.: On the compositum of all degree $d$ extensions of a number field. J. Th{é}or. Nombres Bordx. 26 (2014), 655-672. | DOI | MR | JFM

[10] González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic fields. J. Algebra 478 (2017), 484-505. | DOI | MR | JFM

[11] González-Jiménez, E., Lozano-Robledo, Á.: On the torsion of rational elliptic curves over quartic fields. Math. Comput. 87 (2018), 1457-1478. | DOI | MR | JFM

[12] Kamienny, S.: Torsion points on elliptic curves and $q$-coefficients of modular forms. Invent. Math. 109 (1992), 221-229. | DOI | MR | JFM

[13] Katz, N. M., Lang, S.: Finiteness theorems in geometric classfield theory. Enseign. Math., II. Sér. Appendix by K. Ribet: Torsion points on abelian varieties in cyclotomic extensions 27 1981 285-319. | DOI | MR | JFM

[14] Kenku, M. A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125-149. | DOI | MR | JFM

[15] Laska, M., Lorenz, M.: Rational points on elliptic curves over $\mathbb{Q}$ in elementary abelian 2-extensions of $\mathbb{Q}$. J. Reine Angew. Math. 355 (1985), 163-172. | DOI | MR | JFM

[16] Marcus, D. A.: Number Fields. Universitext, Springer, New York (1977). | DOI | MR | JFM

[17] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47 (1978), 33-186. | DOI | MR | JFM

[18] Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$. Math. Res. Lett. 23 (2016), 245-272. | DOI | MR | JFM

Cité par Sources :