The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 979-995.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We determine explicitly the structure of the torsion group over the maximal abelian extension of $\mathbb {Q}$ and over the maximal $p$-cyclotomic extensions of $\mathbb {Q}$ for the family of rational elliptic curves given by $y^2 = x^3 + B$, where $B$ is an integer.
DOI : 10.21136/CMJ.2020.0082-19
Classification : 11R18, 14H52
Keywords: torsion group; elliptic curve; cyclotomic field
@article{10_21136_CMJ_2020_0082_19,
     author = {Dimabayao, Jerome Tomagan},
     title = {The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {979--995},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.21136/CMJ.2020.0082-19},
     mrnumber = {4181791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/}
}
TY  - JOUR
AU  - Dimabayao, Jerome Tomagan
TI  - The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 979
EP  - 995
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/
DO  - 10.21136/CMJ.2020.0082-19
LA  - en
ID  - 10_21136_CMJ_2020_0082_19
ER  - 
%0 Journal Article
%A Dimabayao, Jerome Tomagan
%T The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$
%J Czechoslovak Mathematical Journal
%D 2020
%P 979-995
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/
%R 10.21136/CMJ.2020.0082-19
%G en
%F 10_21136_CMJ_2020_0082_19
Dimabayao, Jerome Tomagan. The torsion subgroup of a family of elliptic curves over the maximal abelian extension of $\mathbb {Q}$. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 979-995. doi : 10.21136/CMJ.2020.0082-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0082-19/

Cité par Sources :