The bicrossed products of $H_4$ and $H_8$
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 959-977
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $H_4$ and $H_8$ be the Sweedler's and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_{32,1},H_{32,2},H_{32,3}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.
Let $H_4$ and $H_8$ be the Sweedler's and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_{32,1},H_{32,2},H_{32,3}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.
DOI : 10.21136/CMJ.2020.0079-19
Classification : 16S40, 16T05, 16T10
Keywords: Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem
@article{10_21136_CMJ_2020_0079_19,
     author = {Lu, Daowei and Ning, Yan and Wang, Dingguo},
     title = {The bicrossed products of $H_4$ and $H_8$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {959--977},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0079-19},
     mrnumber = {4181790},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0079-19/}
}
TY  - JOUR
AU  - Lu, Daowei
AU  - Ning, Yan
AU  - Wang, Dingguo
TI  - The bicrossed products of $H_4$ and $H_8$
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 959
EP  - 977
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0079-19/
DO  - 10.21136/CMJ.2020.0079-19
LA  - en
ID  - 10_21136_CMJ_2020_0079_19
ER  - 
%0 Journal Article
%A Lu, Daowei
%A Ning, Yan
%A Wang, Dingguo
%T The bicrossed products of $H_4$ and $H_8$
%J Czechoslovak Mathematical Journal
%D 2020
%P 959-977
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0079-19/
%R 10.21136/CMJ.2020.0079-19
%G en
%F 10_21136_CMJ_2020_0079_19
Lu, Daowei; Ning, Yan; Wang, Dingguo. The bicrossed products of $H_4$ and $H_8$. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 959-977. doi: 10.21136/CMJ.2020.0079-19

[1] Agore, A. L.: Classifying bicrossed products of two Taft algebras. J. Pure Appl. Algebra 222 (2018), 914-930. | DOI | MR | JFM

[2] Agore, A. L.: Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K[C_{n}]$. SIGMA, Symmetry, Integrability Geom. Methods Appl. 14 (2018), Article ID 027. | DOI | MR | JFM

[3] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras. Algebr. Represent. Theory 17 (2014), 227-264. | DOI | MR | JFM

[4] Agore, A. L., asitu, A. Chirv\v, Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12 (2009), 481-488. | DOI | MR | JFM

[5] Bontea, C. G.: Classifying bicrossed products of two Sweedler's Hopf algebras. Czech. Math. J. 64 (2014), 419-431. | DOI | MR | JFM

[6] Chen, Q., Wang, D.-G.: Constructing quasitriangular Hopf algebras. Commun. Algebra 43 (2015), 1698-1722. | DOI | MR | JFM

[7] Kassel, C.: Quantum Group. Graduate Texts in Mathematics 155, Springer, New York (1995). | DOI | MR | JFM

[8] Kats, G. I., Palyutkin, V. G.: Finite ring groups. Trans. Mosc. Math. Soc. 15 (1966), 251-294 translation from Tr. Mosk. Mat. O.-va 15 1966 224-261. | MR | JFM

[9] Keilberg, M.: Automorphisms of the doubles of purely non-abelian finite groups. Algebr. Represent. Theory 18 (2015), 1267-1297. | DOI | MR | JFM

[10] Keilberg, M.: Quasitriangular structures of the double of a finite group. Commun. Algebra 46 (2018), 5146-5178. | DOI | MR | JFM

[11] Maillet, E.: Sur les groupes échangeables et les groupes décomposables. Bull. Soc. Math. Fr. 28 (1900), 7-16 French \99999JFM99999 31.0144.02. | DOI | MR

[12] Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130 (1990), 17-64. | DOI | MR | JFM

[13] Masuoka, A.: Semisimple Hopf algebras of dimension 6, 8. Isr. J. Math. 92 (1995), 361-373. | DOI | MR | JFM

[14] Panov, A. N.: Ore extensions of Hopf algebras. Math. Notes 74 (2003), 401-410 translation from Mat. Zametki 74 2003 425-434. | DOI | MR | JFM

[15] Pansera, D.: A class of semisimple Hopf algebras acting on quantum polynomial algebras. Rings, Modules and Codes Contemporary Mathematics 727, American Mathematical Society, Providence (2019), 303-316. | DOI | MR | JFM

[16] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9 (1981), 841-882. | DOI | MR | JFM

[17] Wang, D.-G., Zhang, J. J., Zhuang, G.: Hopf algebras of GK-dimension two with vanishing Ext-group. J. Algebra 388 (2013), 219-247. | DOI | MR | JFM

[18] Wang, D.-G., Zhang, J. J., Zhuang, G.: Connected Hopf algebras of Gelfand-Kirillov dimension four. Trans. Am. Math. Soc. 367 (2015), 5597-5632. | DOI | MR | JFM

[19] Wang, D.-G., Zhang, J. J., Zhuang, G.: Primitive cohomology of Hopf algebras. J. Algebra 464 (2016), 36-96. | DOI | MR | JFM

[20] Xu, Y., Huang, H.-L., Wang, D.-G.: Realization of PBW-deformations of type $A_n$ quantum groups via multiple Ore extensions. J. Pure Appl. Algebra 223 (2019), 1531-1547. | DOI | MR | JFM

[21] Zappa, G.: Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro. Atti 2. Congr. Un. Mat. Ital., Bologna 1940 (1942), 119-125 Italian. | MR | JFM

Cité par Sources :