The bicrossed products of $H_4$ and $H_8$
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 959-977
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $H_4$ and $H_8$ be the Sweedler's and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_{32,1},H_{32,2},H_{32,3}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.
Let $H_4$ and $H_8$ be the Sweedler's and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_{32,1},H_{32,2},H_{32,3}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations.
DOI :
10.21136/CMJ.2020.0079-19
Classification :
16S40, 16T05, 16T10
Keywords: Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem
Keywords: Kac-Paljutkin Hopf algebra; Sweedler's Hopf algebra; bicrossed product; factorization problem
@article{10_21136_CMJ_2020_0079_19,
author = {Lu, Daowei and Ning, Yan and Wang, Dingguo},
title = {The bicrossed products of $H_4$ and $H_8$},
journal = {Czechoslovak Mathematical Journal},
pages = {959--977},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0079-19},
mrnumber = {4181790},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0079-19/}
}
TY - JOUR AU - Lu, Daowei AU - Ning, Yan AU - Wang, Dingguo TI - The bicrossed products of $H_4$ and $H_8$ JO - Czechoslovak Mathematical Journal PY - 2020 SP - 959 EP - 977 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0079-19/ DO - 10.21136/CMJ.2020.0079-19 LA - en ID - 10_21136_CMJ_2020_0079_19 ER -
%0 Journal Article %A Lu, Daowei %A Ning, Yan %A Wang, Dingguo %T The bicrossed products of $H_4$ and $H_8$ %J Czechoslovak Mathematical Journal %D 2020 %P 959-977 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0079-19/ %R 10.21136/CMJ.2020.0079-19 %G en %F 10_21136_CMJ_2020_0079_19
Lu, Daowei; Ning, Yan; Wang, Dingguo. The bicrossed products of $H_4$ and $H_8$. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 959-977. doi: 10.21136/CMJ.2020.0079-19
Cité par Sources :