Keywords: Novikov algebra; fermionic Novikov algebra; invariant bilinear form
@article{10_21136_CMJ_2020_0071_19,
author = {Chen, Zhiqi and Chen, Xueqing and Ding, Ming},
title = {Fermionic {Novikov} algebras admitting invariant non-degenerate symmetric bilinear forms},
journal = {Czechoslovak Mathematical Journal},
pages = {953--958},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0071-19},
mrnumber = {4181789},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0071-19/}
}
TY - JOUR AU - Chen, Zhiqi AU - Chen, Xueqing AU - Ding, Ming TI - Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms JO - Czechoslovak Mathematical Journal PY - 2020 SP - 953 EP - 958 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0071-19/ DO - 10.21136/CMJ.2020.0071-19 LA - en ID - 10_21136_CMJ_2020_0071_19 ER -
%0 Journal Article %A Chen, Zhiqi %A Chen, Xueqing %A Ding, Ming %T Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms %J Czechoslovak Mathematical Journal %D 2020 %P 953-958 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0071-19/ %R 10.21136/CMJ.2020.0071-19 %G en %F 10_21136_CMJ_2020_0071_19
Chen, Zhiqi; Chen, Xueqing; Ding, Ming. Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 953-958. doi: 10.21136/CMJ.2020.0071-19
[1] Balinskii, A. A., Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math., Dokl. 32 (1985), 228-231 translated from Dokl. Akad. Nauk SSSR 283 1985 1036-1039. | MR | JFM
[2] Burde, D.: Simple left-symmetric algebras with solvable Lie algebra. Manuscr. Math. 95 (1998), 397-411 erratum ibid. 96 1998 393-395. | DOI | MR | JFM
[3] Dubrovin, B. A., Novikov, S. P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitham averaging method. Sov. Math., Dokl. 27 (1983), 665-669 translated from Dokl. Akad. Nauk SSSR 270 1983 781-785. | MR | JFM
[4] Dubrovin, B. A., Novikov, S. P.: On Poisson brackets of hydrodynamic type. Sov. Math., Dokl. 30 (1984), 651-654 translated from Dokl. Akad. Nauk SSSR 279 1984 294-297. | MR | JFM
[5] Gel'fand, I. M., Dikii, L. A.: Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations. Russ. Math. Surv. 30 (1975), 77-113 translated from Usp. Mat. Nauk 30 1975 67-100. | DOI | MR | JFM
[6] Gel'fand, I. M., Dikii, L. A.: A Lie algebra structure in a formal variational calculation. Funct. Anal. Appl. 10 (1976), 16-22 translated from Funkts. Anal. Prilozh. 10 1976 18-25. | DOI | MR | JFM
[7] Gel'fand, I. M., Dorfman, I. Ya.: Hamiltonian operators and algebraic structures related to them. Funkts. Anal. Prilozh. Russian 13 (1979), 13-30. | MR | JFM
[8] Guediri, M.: Novikov algebras carrying an invariant Lorentzian symmetric bilinear form. J. Geom. Phys. 82 (2014), 132-144. | DOI | MR | JFM
[9] O'Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics 103, Academic Press, New York (1983). | MR | JFM
[10] Vinberg, E. B.: The theory of convex homogeneous cones. Trans. Mosc. Math. Soc. 12 (1963), 340-403 translated from Tr. Mosk. Mat. O. 12 1963 303-358. | MR | JFM
[11] Xu, X.: Hamiltonian operators and associative algebras with a derivation. Lett. Math. Phys. 33 (1995), 1-6. | DOI | MR | JFM
[12] Xu, X.: Hamiltonian superoperators. J. Phys. A, Math. Gen. 28 (1995), 1681-1698. | DOI | MR | JFM
[13] Xu, X.: Variational calculus of supervariables and related algebraic structures. J. Algebra 223 (2000), 396-437. | DOI | MR | JFM
[14] Zel'manov, E.: On a class of local translation invariant Lie algebras. Sov. Math., Dokl. 35 (1987), 216-218 translated from Dokl. Akad. Nauk SSSR 292 1987 1294-1297. | MR | JFM
Cité par Sources :