Keywords: deformation of representation; Lie algebra; Chevalley-Eilenberg cohomology; Moyal star product; Weyl correspondence; minimal realization
@article{10_21136_CMJ_2020_0053_19,
author = {Cahen, Benjamin},
title = {Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb R})$ and ${\rm SL}(2,{\mathbb C})$},
journal = {Czechoslovak Mathematical Journal},
pages = {935--951},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0053-19},
mrnumber = {4181788},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0053-19/}
}
TY - JOUR
AU - Cahen, Benjamin
TI - Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb R})$ and ${\rm SL}(2,{\mathbb C})$
JO - Czechoslovak Mathematical Journal
PY - 2020
SP - 935
EP - 951
VL - 70
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0053-19/
DO - 10.21136/CMJ.2020.0053-19
LA - en
ID - 10_21136_CMJ_2020_0053_19
ER -
%0 Journal Article
%A Cahen, Benjamin
%T Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb R})$ and ${\rm SL}(2,{\mathbb C})$
%J Czechoslovak Mathematical Journal
%D 2020
%P 935-951
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0053-19/
%R 10.21136/CMJ.2020.0053-19
%G en
%F 10_21136_CMJ_2020_0053_19
Cahen, Benjamin. Formal deformations and principal series representations of ${\rm SL}(2,{\mathbb R})$ and ${\rm SL}(2,{\mathbb C})$. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 935-951. doi: 10.21136/CMJ.2020.0053-19
[1] Arnal, D., Benamor, H., Cahen, B.: Minimal realizations of classical simple Lie algebras through deformations. Ann. Fac. Sci. Toulouse, VI. Sér., Math. 7 (1998), 169-184. | DOI | MR | JFM
[2] Cahen, B.: Construction par déformation de réalisations minimales d'une algèbre de Lie simple de type $G_2$. C. R. Acad. Sci., Paris, Sér. I 323 (1996), 853-857 French corrigendum ibid. 355 485 2017. | MR | JFM
[3] Cahen, B.: Deformation program for principal series representations. Lett. Math. Phys. 36 (1996), 65-75. | DOI | MR | JFM
[4] Cahen, B.: Déformations formelles de certaines représentations de l'algèbre de Lie d'un groupe de Poincaré généralisé. Ann. Math. Blaise Pascal 8 (2001), 17-37 French. | DOI | MR | JFM
[5] Cahen, B.: Weyl quantization for semidirect products. Differ. Geom. Appl. 25 (2007), 177-190. | DOI | MR | JFM
[6] Cahen, B.: Berezin quantization and holomorphic representations. Rend. Semin. Mat. Univ. Padova 129 (2013), 277-297. | DOI | MR | JFM
[7] Cahen, B.: A construction by deformation of unitary irreducible representations of $SU(1,n)$ and $SU(n+1)$. J. Algebra Appl. 18 (2019), Article ID 1950125, 15 pages. | DOI | MR | JFM
[8] Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics. Springer, Berlin (2012). | DOI | MR | JFM
[9] Fialowski, A.: Deformations in mathematics and physics. Int. J. Theor. Phys. 47 (2008), 333-337. | DOI | MR | JFM
[10] Fialowski, A., Montigny, M. de: Deformations and contractions of Lie algebras. J. Phys. A, Math. Gen. 38 (2005), 6335-6349. | DOI | MR | JFM
[11] Fialowski, A., Penkava, M.: The moduli space of 4-dimensional nilpotent complex associative algebras. Linear Algebra Appl. 457 (2014), 408-427. | DOI | MR | JFM
[12] Folland, G. B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies 122. Princeton University Press, Princeton (1989). | DOI | MR | JFM
[13] Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79 (1964), 59-103. | DOI | MR | JFM
[14] Guichardet, A.: Cohomologie des Groupes Topologiques et des Algèbres de Lie. Textes Mathématiques 2. Cedic, Paris (1980), French. | MR | JFM
[15] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics 34. American Mathematical Society, Providence (2001). | DOI | MR | JFM
[16] Hermann, R.: Analytic continuation of group representations. IV. Commun. Math. Phys. 5 (1967), 131-156. | DOI | MR | JFM
[17] Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Grundlehren der Mathematischen Wissenschaften 274. Springer, Berlin (1985). | DOI | MR | JFM
[18] Joseph, A.: Minimal realizations and spectrum generating algebras. Commun. Math. Phys. 36 (1974), 325-338. | DOI | MR | JFM
[19] Kirillov, A. A.: Lectures on the Orbit Method. Graduate Studies in Mathematics 64. American Mathematical Society, Providence (2004). | DOI | MR | JFM
[20] Knapp, A. W.: Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton Mathematical Series 36. Princeton University Press, Princeton (1986). | DOI | MR | JFM
[21] Lesimple, M., Pinczon, G.: Deformations of Lie group and Lie algebra representations. J. Math. Phys. 34 (1993), 4251-4272. | DOI | MR | JFM
[22] Levy-Nahas, M.: Deformation and contraction of Lie algebras. J. Math. Phys. 8 (1967), 1211-1222. | DOI | MR | JFM
[23] Levy-Nahas, M., Seneor, R.: First order deformations of Lie algebras representations, $E(3)$ and Poincaré examples. Commun. Math. Phys. 9 (1968), 242-266. | DOI | MR | JFM
[24] A. Nijenhuis, R. W. Richardson, Jr.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72 (1966), 1-29. | DOI | MR | JFM
[25] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Am. Math. Soc. 73 (1967), 175-179. | DOI | MR | JFM
[26] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of Lie algebras structures. J. Math. Mech. 17 (1967), 89-105. | DOI | MR | JFM
[27] Voros, A.: An algebra of pseudo differential operators and the asymptotics of quantum mechanics. J. Funct. Anal. 29 (1978), 104-132. | DOI | MR | JFM
[28] Wallach, N. R.: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics 19. Marcel Dekker, New York (1973). | MR | JFM
Cité par Sources :