Keywords: sectional Newtonian graph; level set; partition
@article{10_21136_CMJ_2020_0049_20,
author = {Fan, Zening and Zhao, Suo},
title = {On sectional {Newtonian} graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {605--629},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0049-20},
mrnumber = {4151695},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0049-20/}
}
TY - JOUR AU - Fan, Zening AU - Zhao, Suo TI - On sectional Newtonian graphs JO - Czechoslovak Mathematical Journal PY - 2020 SP - 605 EP - 629 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0049-20/ DO - 10.21136/CMJ.2020.0049-20 LA - en ID - 10_21136_CMJ_2020_0049_20 ER -
Fan, Zening; Zhao, Suo. On sectional Newtonian graphs. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 605-629. doi: 10.21136/CMJ.2020.0049-20
[1] Duren, P.: Harmonic Mappings in the Plane. Cambridge Tracts in Mathematics 156. Cambridge University Press, Cambridge (2004). | DOI | MR | JFM
[2] Griffths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. John Wiley & Sons, New York (1994). | DOI | MR | JFM
[3] Huybrechts, D.: Complex Geometry: An Introduction. Universitext. Springer, Berlin (2005). | DOI | MR | JFM
[4] Jongen, H. T., Jonker, P., Twilt, F.: On the classification of plane graphs representing structurally stable rational Newton flows. J. Comb. Theory, Ser. B 51 (1991), 256-270. | DOI | MR | JFM
[5] Kahn, J.: Newtonian graphs for families of complex polynomials. J. Complexity 7 (1991), 425-442. | DOI | MR | JFM
[6] Kozen, D., Stefánsson, K.: Computing the Newtonian graph. J. Symb. Comput. 24 (1997), 125-136. | DOI | MR | JFM
[7] Shub, M., Tischler, D., Williams, R. F.: The Newtonian graph of a complex polynomial. SIAM J. Math. Anal. 19 (1988), 246-256. | DOI | MR | JFM
[8] Smale, S.: On the efficiency of algorithms of analysis. Bull. Am. Math. Soc., New Ser. 13 (1985), 87-121. | DOI | MR | JFM
[9] Stefánsson, K.: Newtonian Graphs, Riemann Surfaces and Computation. PhD Thesis. Cornell University, Ann Arbor (1995). | MR
Cité par Sources :