On the Waring-Goldbach problem for one square and five cubes in short intervals
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 563-589
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as $$ n=p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3, \Bigl | p_1^2-\dfrac {N}{6}\Bigr | \leq U, \quad \Bigl | p_i^3-\dfrac {N}{6}\Bigr |\leq U, \quad i=2,3,4,5,6, $$ where $U=N^{1-\delta +\varepsilon }$ with $\delta \leq 8/225$.
Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as $$ n=p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3, \Bigl | p_1^2-\dfrac {N}{6}\Bigr | \leq U, \quad \Bigl | p_i^3-\dfrac {N}{6}\Bigr |\leq U, \quad i=2,3,4,5,6, $$ where $U=N^{1-\delta +\varepsilon }$ with $\delta \leq 8/225$.
DOI : 10.21136/CMJ.2020.0013-20
Classification : 11P05, 11P32, 11P55
Keywords: Waring-Goldbach problem; Hardy-Littlewood method; exponential sum; short interval
@article{10_21136_CMJ_2020_0013_20,
     author = {Xue, Fei and Zhang, Min and Li, Jinjiang},
     title = {On the {Waring-Goldbach} problem for one square and five cubes in short intervals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {563--589},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0013-20},
     mrnumber = {4263187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0013-20/}
}
TY  - JOUR
AU  - Xue, Fei
AU  - Zhang, Min
AU  - Li, Jinjiang
TI  - On the Waring-Goldbach problem for one square and five cubes in short intervals
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 563
EP  - 589
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0013-20/
DO  - 10.21136/CMJ.2020.0013-20
LA  - en
ID  - 10_21136_CMJ_2020_0013_20
ER  - 
%0 Journal Article
%A Xue, Fei
%A Zhang, Min
%A Li, Jinjiang
%T On the Waring-Goldbach problem for one square and five cubes in short intervals
%J Czechoslovak Mathematical Journal
%D 2021
%P 563-589
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0013-20/
%R 10.21136/CMJ.2020.0013-20
%G en
%F 10_21136_CMJ_2020_0013_20
Xue, Fei; Zhang, Min; Li, Jinjiang. On the Waring-Goldbach problem for one square and five cubes in short intervals. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 563-589. doi: 10.21136/CMJ.2020.0013-20

[1] Cai, Y.: The Waring-Goldbach problem: One square and five cubes. Ramanujan J. 34 (2014), 57-72. | DOI | MR | JFM

[2] Hua, L. K.: Additive Theory of Prime Numbers. Translations of Mathematical Monographs 13. American Mathematical Society, Providence (1965). | DOI | MR | JFM

[3] Kumchev, A. V.: On Weyl sums over primes in short intervals. Number Theory: Arithmetic in Shangri-La Series on Number Theory and Its Applications 8. World Scientific, Hackensack (2013), 116-131. | DOI | MR | JFM

[4] Li, J., Zhang, M.: On the Waring-Goldbach problem for one square and five cubes. Int. J. Number Theory 14 (2018), 2425-2440. | DOI | MR | JFM

[5] Liu, J.: On Lagrange's theorem with prime variables. Q. J. Math. 54 (2003), 453-462. | DOI | MR | JFM

[6] Pan, C., Pan, C.: Goldbach Conjecture. Science Press, Beijing (1992). | MR | JFM

[7] Sinnadurai, J. S.-C. L.: Representation of integers as sums of six cubes and one square. Q. J. Math., Oxf. II. Ser. 16 (1965), 289-296. | DOI | MR | JFM

[8] Stanley, G. K.: The representation of a number as the sum of one square and a number of $k$-th powers. Proc. Lond. Math. Soc. (2) 31 (1930), 512-553 \99999JFM99999 56.0174.01. | DOI | MR

[9] Stanley, G. K.: The representation of a number as a sum of squares and cubes. J. London Math. Soc. 6 (1931), 194-197. | DOI | MR | JFM

[10] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford University Press, New York (1986). | MR | JFM

[11] Vaughan, R. C.: On Waring's problem for smaller exponents. Proc. Lond. Math. Soc., III. Ser. 52 (1986), 445-463. | DOI | MR | JFM

[12] Vaughan, R. C.: On Waring's problem: One square and five cubes. Q. J. Math., Oxf. II. Ser. 37 (1986), 117-127. | DOI | MR | JFM

[13] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM

[14] Vinogradov, I. M.: Elements of Number Theory. Dover Publications, New York (1954). | MR | JFM

[15] Watson, G. L.: On sums of a square and five cubes. J. Lond. Math. Soc., II. Ser. 5 (1972), 215-218. | DOI | MR | JFM

[16] Wooley, T. D.: Slim exceptional sets in Waring's problem: One square and five cubes. Q. J. Math. 53 (2002), 111-118. | DOI | MR | JFM

[17] Zhang, M., Li, J.: Waring-Goldbach problem for unlike powers with almost equal variables. Int. J. Number Theory 14 (2018), 2441-2472. | DOI | MR | JFM

[18] Zhao, L.: On the Waring-Goldbach problem for fourth and sixth powers. Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. | DOI | MR | JFM

Cité par Sources :