Betti numbers of some circulant graphs
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 593-607
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $o(n)$ be the greatest odd integer less than or equal to $n$. In this paper we provide explicit formulae to compute $\mathbb {N}$-graded Betti numbers of the circulant graphs $C_{2n}(1,2,3,5,\ldots ,o(n))$. We do this by showing that this graph is the product (or join) of the cycle $C_n$ by itself, and computing Betti numbers of $C_n*C_n$. We also discuss whether such a graph (more generally, $G*H$) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or $S_2$.
Let $o(n)$ be the greatest odd integer less than or equal to $n$. In this paper we provide explicit formulae to compute $\mathbb {N}$-graded Betti numbers of the circulant graphs $C_{2n}(1,2,3,5,\ldots ,o(n))$. We do this by showing that this graph is the product (or join) of the cycle $C_n$ by itself, and computing Betti numbers of $C_n*C_n$. We also discuss whether such a graph (more generally, $G*H$) is well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum, or $S_2$.
DOI : 10.21136/CMJ.2019.0606-16
Classification : 05C75, 13D02
Keywords: Betti number; Castelnuovo-Mumford regularity; projective dimension; circulant graph
@article{10_21136_CMJ_2019_0606_16,
     author = {Abdi Makvand, Mohsen and Mousivand, Amir},
     title = {Betti numbers of some circulant graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {593--607},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2019.0606-16},
     mrnumber = {3989268},
     zbl = {07088806},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0606-16/}
}
TY  - JOUR
AU  - Abdi Makvand, Mohsen
AU  - Mousivand, Amir
TI  - Betti numbers of some circulant graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 593
EP  - 607
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0606-16/
DO  - 10.21136/CMJ.2019.0606-16
LA  - en
ID  - 10_21136_CMJ_2019_0606_16
ER  - 
%0 Journal Article
%A Abdi Makvand, Mohsen
%A Mousivand, Amir
%T Betti numbers of some circulant graphs
%J Czechoslovak Mathematical Journal
%D 2019
%P 593-607
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0606-16/
%R 10.21136/CMJ.2019.0606-16
%G en
%F 10_21136_CMJ_2019_0606_16
Abdi Makvand, Mohsen; Mousivand, Amir. Betti numbers of some circulant graphs. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 593-607. doi: 10.21136/CMJ.2019.0606-16

[1] Abbott, J., Bigatti, A. M., Robbiano, L.: CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it SW: https://swmath.org/software/00143

[2] Boros, E., Gurvich, V., Milanič, M.: On CIS circulants. Discrete Math. 318 (2014), 78-95. | DOI | MR | JFM

[3] Brown, J., Hoshino, R.: Independence polynomials of circulants with an application to music. Discrete Math. 309 (2009), 2292-2304. | DOI | MR | JFM

[4] Brown, J., Hoshino, R.: Well-covered circulant graphs. Discrete Math. 311 (2011), 244-251. | DOI | MR | JFM

[5] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[6] Earl, J., Meulen, K. N. Vander, Tuyl, A. Van: Independence complexes of well-covered circulant graphs. Exp. Math. 25 (2016), 441-451. | DOI | MR | JFM

[7] Grayson, D. R., Stillman, M. E., Eisenbud, D.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/ SW: https://swmath.org/software/00537

[8] Hà, H. T., Tuyl, A. Van: Splittable ideals and the resolutions of monomial ideals. J. Algebra 309 (2007), 405-425. | DOI | MR | JFM

[9] Hà, H. T., Tuyl, A. Van: Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J. Algebr. Comb. 27 (2008), 215-245. | DOI | MR | JFM

[10] Hoshino, R.: Independence polynomials of circulant graphs. Ph.D. Thesis, Dalhousie University, Halifax (2008). | MR

[11] Jacques, S.: Betti numbers of graph ideals. Ph.D. Thesis, University of Sheffield, Sheffield. Available at (2004). | arXiv

[12] Jacques, S., Katzman, M.: The Betti numbers of forests. Available at , 2005, 12 pages. | arXiv

[13] Katzman, M.: Characteristic-independence of Betti numbers of graph ideals. J. Comb. Theory, Ser. A 113 (2006), 435-454. | DOI | MR | JFM

[14] Mahmoudi, M., Mousivand, A., Tehranian, A.: Castelnuovo-Mumford regularity of graph ideals. Ars Comb. 125 (2016), 75-83. | MR | JFM

[15] Mousivand, A.: Algebraic properties of product of graphs. Commun. Algebra 40 (2012), 4177-4194. | DOI | MR | JFM

[16] Mousivand, A.: Circulant $S_2$ graphs. Available at , 2015, 11 pages. | arXiv

[17] Moussi, R.: A characterization of certain families of well-covered circulant graphs. M.Sc. Thesis, St. Mary's University, Halifax. Available at http://library2.smu.ca/handle/01/24725, 2012.

[18] Roth, M., Tuyl, A. Van: On the linear strand of an edge ideal. Commun. Algebra 35 (2007), 821-832. | DOI | MR | JFM

[19] Terai, N.: Alexander duality in Stanley-Reisner rings. Affine Algebraic Geometry Osaka University Press, Osaka T. Hibi (2007), 449-462. | MR | JFM

[20] Meulen, K. N. Vander, Tuyl, A. Van: Shellability, vertex decomposability, and lexicographical products of graphs. Contrib. Discrete Math. 12 (2017), 63-68. | DOI | MR | JFM

[21] Meulen, K. N. Vander, Tuyl, A. Van, Watt, C.: Cohen-Macaulay circulant graphs. Commun. Algebra 42 (2014), 1896-1910. | DOI | MR | JFM

[22] Villarreal, R. H.: Monomial Algebras. Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). | MR | JFM

[23] Whieldon, G.: Jump sequences of edge ideals. Available at , 2010, 27 pages. | arXiv

[24] Zheng, X.: Resolutions of facet ideals. Commun. Algebra 32 (2004), 2301-2324. | DOI | MR | JFM

Cité par Sources :