Notes on commutator on the variable exponent Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1029-1037.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss $[b,T]$ is bounded on the variable exponent Lebesgue spaces, then $b$ is a bounded mean oscillation (BMO) function.
DOI : 10.21136/CMJ.2019.0590-17
Classification : 42B20, 47B07
Keywords: bounded mean oscillation; commutator; Hardy space; variable exponent Lebesgue space
@article{10_21136_CMJ_2019_0590_17,
     author = {Wang, Dinghuai},
     title = {Notes on commutator on the variable exponent {Lebesgue} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1029--1037},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2019.0590-17},
     mrnumber = {4039617},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/}
}
TY  - JOUR
AU  - Wang, Dinghuai
TI  - Notes on commutator on the variable exponent Lebesgue spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1029
EP  - 1037
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/
DO  - 10.21136/CMJ.2019.0590-17
LA  - en
ID  - 10_21136_CMJ_2019_0590_17
ER  - 
%0 Journal Article
%A Wang, Dinghuai
%T Notes on commutator on the variable exponent Lebesgue spaces
%J Czechoslovak Mathematical Journal
%D 2019
%P 1029-1037
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/
%R 10.21136/CMJ.2019.0590-17
%G en
%F 10_21136_CMJ_2019_0590_17
Wang, Dinghuai. Notes on commutator on the variable exponent Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1029-1037. doi : 10.21136/CMJ.2019.0590-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/

Cité par Sources :