Notes on commutator on the variable exponent Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1029-1037
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss $[b,T]$ is bounded on the variable exponent Lebesgue spaces, then $b$ is a bounded mean oscillation (BMO) function.
DOI :
10.21136/CMJ.2019.0590-17
Classification :
42B20, 47B07
Keywords: bounded mean oscillation; commutator; Hardy space; variable exponent Lebesgue space
Keywords: bounded mean oscillation; commutator; Hardy space; variable exponent Lebesgue space
@article{10_21136_CMJ_2019_0590_17,
author = {Wang, Dinghuai},
title = {Notes on commutator on the variable exponent {Lebesgue} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {1029--1037},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2019},
doi = {10.21136/CMJ.2019.0590-17},
mrnumber = {4039617},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/}
}
TY - JOUR AU - Wang, Dinghuai TI - Notes on commutator on the variable exponent Lebesgue spaces JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1029 EP - 1037 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/ DO - 10.21136/CMJ.2019.0590-17 LA - en ID - 10_21136_CMJ_2019_0590_17 ER -
%0 Journal Article %A Wang, Dinghuai %T Notes on commutator on the variable exponent Lebesgue spaces %J Czechoslovak Mathematical Journal %D 2019 %P 1029-1037 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/ %R 10.21136/CMJ.2019.0590-17 %G en %F 10_21136_CMJ_2019_0590_17
Wang, Dinghuai. Notes on commutator on the variable exponent Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1029-1037. doi: 10.21136/CMJ.2019.0590-17
Cité par Sources :