Notes on commutator on the variable exponent Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1029-1037
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss $[b,T]$ is bounded on the variable exponent Lebesgue spaces, then $b$ is a bounded mean oscillation (BMO) function.
We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss $[b,T]$ is bounded on the variable exponent Lebesgue spaces, then $b$ is a bounded mean oscillation (BMO) function.
DOI : 10.21136/CMJ.2019.0590-17
Classification : 42B20, 47B07
Keywords: bounded mean oscillation; commutator; Hardy space; variable exponent Lebesgue space
@article{10_21136_CMJ_2019_0590_17,
     author = {Wang, Dinghuai},
     title = {Notes on commutator on the variable exponent {Lebesgue} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1029--1037},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0590-17},
     mrnumber = {4039617},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/}
}
TY  - JOUR
AU  - Wang, Dinghuai
TI  - Notes on commutator on the variable exponent Lebesgue spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 1029
EP  - 1037
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/
DO  - 10.21136/CMJ.2019.0590-17
LA  - en
ID  - 10_21136_CMJ_2019_0590_17
ER  - 
%0 Journal Article
%A Wang, Dinghuai
%T Notes on commutator on the variable exponent Lebesgue spaces
%J Czechoslovak Mathematical Journal
%D 2019
%P 1029-1037
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0590-17/
%R 10.21136/CMJ.2019.0590-17
%G en
%F 10_21136_CMJ_2019_0590_17
Wang, Dinghuai. Notes on commutator on the variable exponent Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1029-1037. doi: 10.21136/CMJ.2019.0590-17

[1] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable {$L^p$} spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. | DOI | MR | JFM

[2] Chaffee, L., Cruz-Uribe, D.: Necessary conditions for the boundedness of linear and bilinear commutators on Banach function spaces. Math. Inequal. Appl. 21 (2018), 1-16. | DOI | MR | JFM

[3] Coifman, R. R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103 (1976), 611-635. | DOI | MR | JFM

[4] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. | MR | JFM

[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | DOI | MR | JFM

[6] Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Mat. 16 (1978), 263-270. | DOI | MR | JFM

[7] Komori, Y.: Notes on commutators on Herz-type spaces. Arch. Math. 81 (2003), 318-326. | DOI | MR | JFM

[8] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR | JFM

[9] Li, J., Wick, B. D.: Weak factorizations of the Hardy space $H^1(\mathbb{R}^n)$ in terms of multilinear Riesz transforms. Canad. Math. Bull. 60 (2017), 571-585. | DOI | MR | JFM

[10] Uchiyama, A.: The factorization of $H^p$ on the space of homogeneous type. Pac. J. Math. 92 (1981), 453-468. | DOI | MR | JFM

Cité par Sources :