Inverse eigenvalue problem of cell matrices
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1015-1027
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the problem of reconstructing an $n \times n$ cell matrix $D(\vec {x})$ constructed from a vector $\vec {x} = (x_{1}, x_{2},\dots , x_{n})$ of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices $D(\vec {x})$ and $D(\pi (\vec {x}))$ are the same for every permutation $\pi \in S_{n}$.
DOI :
10.21136/CMJ.2019.0579-17
Classification :
15B05, 15B10, 15B48, 35P20, 35P30
Keywords: cell matrix; inverse eigenvalue problem; Euclidean distance matrix
Keywords: cell matrix; inverse eigenvalue problem; Euclidean distance matrix
@article{10_21136_CMJ_2019_0579_17,
author = {Khim, Sreyaun and Rodtes, Kijti},
title = {Inverse eigenvalue problem of cell matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {1015--1027},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2019},
doi = {10.21136/CMJ.2019.0579-17},
mrnumber = {4039616},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0579-17/}
}
TY - JOUR AU - Khim, Sreyaun AU - Rodtes, Kijti TI - Inverse eigenvalue problem of cell matrices JO - Czechoslovak Mathematical Journal PY - 2019 SP - 1015 EP - 1027 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0579-17/ DO - 10.21136/CMJ.2019.0579-17 LA - en ID - 10_21136_CMJ_2019_0579_17 ER -
%0 Journal Article %A Khim, Sreyaun %A Rodtes, Kijti %T Inverse eigenvalue problem of cell matrices %J Czechoslovak Mathematical Journal %D 2019 %P 1015-1027 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0579-17/ %R 10.21136/CMJ.2019.0579-17 %G en %F 10_21136_CMJ_2019_0579_17
Khim, Sreyaun; Rodtes, Kijti. Inverse eigenvalue problem of cell matrices. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 1015-1027. doi: 10.21136/CMJ.2019.0579-17
Cité par Sources :