On representations of real analytic functions by monogenic functions
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 997-1013.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi's formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford \hbox {analysis}.
DOI : 10.21136/CMJ.2019.0573-17
Classification : 30G35, 35C10, 35J05
Keywords: monogenic function; inhomogeneous Dirac equation; inhomogeneous poly-Dirac equation; Almansi's formula of infinite order; Clifford analysis
@article{10_21136_CMJ_2019_0573_17,
     author = {Yuan, Hongfen},
     title = {On representations of real analytic functions by monogenic functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {997--1013},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2019.0573-17},
     mrnumber = {4039615},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/}
}
TY  - JOUR
AU  - Yuan, Hongfen
TI  - On representations of real analytic functions by monogenic functions
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 997
EP  - 1013
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/
DO  - 10.21136/CMJ.2019.0573-17
LA  - en
ID  - 10_21136_CMJ_2019_0573_17
ER  - 
%0 Journal Article
%A Yuan, Hongfen
%T On representations of real analytic functions by monogenic functions
%J Czechoslovak Mathematical Journal
%D 2019
%P 997-1013
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/
%R 10.21136/CMJ.2019.0573-17
%G en
%F 10_21136_CMJ_2019_0573_17
Yuan, Hongfen. On representations of real analytic functions by monogenic functions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 997-1013. doi : 10.21136/CMJ.2019.0573-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/

Cité par Sources :