On representations of real analytic functions by monogenic functions
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 997-1013
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi's formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford \hbox {analysis}.
Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi's formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford \hbox {analysis}.
DOI : 10.21136/CMJ.2019.0573-17
Classification : 30G35, 35C10, 35J05
Keywords: monogenic function; inhomogeneous Dirac equation; inhomogeneous poly-Dirac equation; Almansi's formula of infinite order; Clifford analysis
@article{10_21136_CMJ_2019_0573_17,
     author = {Yuan, Hongfen},
     title = {On representations of real analytic functions by monogenic functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {997--1013},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0573-17},
     mrnumber = {4039615},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/}
}
TY  - JOUR
AU  - Yuan, Hongfen
TI  - On representations of real analytic functions by monogenic functions
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 997
EP  - 1013
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/
DO  - 10.21136/CMJ.2019.0573-17
LA  - en
ID  - 10_21136_CMJ_2019_0573_17
ER  - 
%0 Journal Article
%A Yuan, Hongfen
%T On representations of real analytic functions by monogenic functions
%J Czechoslovak Mathematical Journal
%D 2019
%P 997-1013
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/
%R 10.21136/CMJ.2019.0573-17
%G en
%F 10_21136_CMJ_2019_0573_17
Yuan, Hongfen. On representations of real analytic functions by monogenic functions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 997-1013. doi: 10.21136/CMJ.2019.0573-17

[1] Al-Yasiri, Z. R., Gürlebeck, K.: On a boundary value problem for a $p$-Dirac equation. Math. Methods Appl. Sci. 39 (2016), 4056-4068. | DOI | MR | JFM

[2] Aronszajn, N., Creese, T. M., Lipkin, L. J.: Polyharmonic Functions. Oxford Mathematical Monographs, Oxford University Press, Oxford (1983). | MR | JFM

[3] Bondarenko, B. A.: Operator Algorithms in Differential Equations. Izdatel'stvo Fan Uzbekskoj SSR, Tashkent (1984), Russian. | MR | JFM

[4] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston (1982). | MR | JFM

[5] Brackx, F., Schepper, H. De, Eelbode, D., Souček, V.: Explicit formulae for monogenic projections. Int. Conf. on Numerical Analysis and Applied Mathematics 2008 T. Simos et al. AIP Conference Proceedings 1048, American Institute of Physics, Melville (2008), 697-700. | DOI | JFM

[6] Constales, D., Grob, D., Kraußhar, R. S.: Reproducing kernel functions of solutions to polynomial Dirac equations in the annulus of the unit ball in $\mathbb R^{n}$ and applications to boundary value problems. J. Math. Anal. Appl. 358 (2009), 281-293. | DOI | MR | JFM

[7] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator. Mathematics and Its Applications 53, Kluwer Academic Publishers, Dordrecht (1992). | DOI | MR | JFM

[8] Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313 (1989), 539-570. | DOI | MR | JFM

[9] Kähler, U.: Clifford analysis and the Navier-Stokes equations over unbounded domains. Adv. Appl. Clifford Algebr. 11 (2001), 305-318. | DOI | MR | JFM

[10] Karachik, V. V.: Polynomial solutions to systems of partial differential equations with constant coefficients. Yokohama Math. J. 47 (2000), 121-142. | MR | JFM

[11] Karachik, V. V.: Normalized system of functions with respect to the Laplace operator and its applications. J. Math. Anal. Appl. 287 (2003), 577-592. | DOI | MR | JFM

[12] Karachik, V. V.: Method of Normalized Systems of Functions. Izd. Tsentr Yuzhno-Ural'skiĭ Gosudarstvennyĭ Universitet, Chelyabinsk (2014), Russian. | JFM

[13] Karachik, V. V.: Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball. Differ. Equ. 51 (2015), 1033-1042 English. Russian original translation from Differ. Uravn. 51 2015 1038-1047. | DOI | MR | JFM

[14] Karachik, V. V., Turmetov, B.: Solvability of some Neumann-type boundary value problems for biharmonic equations. Electron. J. Differ. Equ. 217 (2017), Paper No. 218, 17 pages. | MR | JFM

[15] Ku, M., Wang, D.: Solutions to the polynomial Dirac equations on unbounded domains in Clifford analysis. Math. Methods Appl. Sci. 34 (2011), 418-427. | DOI | MR | JFM

[16] Ryan, J.: Cauchy-Green type formulae in Clifford analysis. Trans. Am. Math. Soc. 347 (1995), 1331-1341. | DOI | MR | JFM

[17] Sommen, F., Jancewicz, B.: Explicit solutions of the inhomogeneous Dirac equation. J. Anal. Math. 71 (1997), 59-74. | DOI | MR | JFM

[18] Yuan, H. F.: Dirichlet type problems for Dunkl-Poisson equations. Bound. Value Probl. 2016 (2016), Article ID 222, 16 pages. | DOI | MR | JFM

[19] Yuan, H. F.: Solutions of the Poisson equation and related equations in super spinor space. Comput. Methods Funct. Theory 16 (2016), 699-715. | DOI | MR | JFM

[20] Yuan, H. F., Karachik, V. V.: Dunkl-Poisson equation and related equations in superspace. Math. Model. Anal. 20 (2015), 768-781. | DOI | MR

Cité par Sources :