Keywords: monogenic function; inhomogeneous Dirac equation; inhomogeneous poly-Dirac equation; Almansi's formula of infinite order; Clifford analysis
@article{10_21136_CMJ_2019_0573_17,
author = {Yuan, Hongfen},
title = {On representations of real analytic functions by monogenic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {997--1013},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0573-17},
mrnumber = {4039615},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/}
}
TY - JOUR AU - Yuan, Hongfen TI - On representations of real analytic functions by monogenic functions JO - Czechoslovak Mathematical Journal PY - 2019 SP - 997 EP - 1013 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/ DO - 10.21136/CMJ.2019.0573-17 LA - en ID - 10_21136_CMJ_2019_0573_17 ER -
%0 Journal Article %A Yuan, Hongfen %T On representations of real analytic functions by monogenic functions %J Czechoslovak Mathematical Journal %D 2019 %P 997-1013 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0573-17/ %R 10.21136/CMJ.2019.0573-17 %G en %F 10_21136_CMJ_2019_0573_17
Yuan, Hongfen. On representations of real analytic functions by monogenic functions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 997-1013. doi: 10.21136/CMJ.2019.0573-17
[1] Al-Yasiri, Z. R., Gürlebeck, K.: On a boundary value problem for a $p$-Dirac equation. Math. Methods Appl. Sci. 39 (2016), 4056-4068. | DOI | MR | JFM
[2] Aronszajn, N., Creese, T. M., Lipkin, L. J.: Polyharmonic Functions. Oxford Mathematical Monographs, Oxford University Press, Oxford (1983). | MR | JFM
[3] Bondarenko, B. A.: Operator Algorithms in Differential Equations. Izdatel'stvo Fan Uzbekskoj SSR, Tashkent (1984), Russian. | MR | JFM
[4] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston (1982). | MR | JFM
[5] Brackx, F., Schepper, H. De, Eelbode, D., Souček, V.: Explicit formulae for monogenic projections. Int. Conf. on Numerical Analysis and Applied Mathematics 2008 T. Simos et al. AIP Conference Proceedings 1048, American Institute of Physics, Melville (2008), 697-700. | DOI | JFM
[6] Constales, D., Grob, D., Kraußhar, R. S.: Reproducing kernel functions of solutions to polynomial Dirac equations in the annulus of the unit ball in $\mathbb R^{n}$ and applications to boundary value problems. J. Math. Anal. Appl. 358 (2009), 281-293. | DOI | MR | JFM
[7] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator. Mathematics and Its Applications 53, Kluwer Academic Publishers, Dordrecht (1992). | DOI | MR | JFM
[8] Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313 (1989), 539-570. | DOI | MR | JFM
[9] Kähler, U.: Clifford analysis and the Navier-Stokes equations over unbounded domains. Adv. Appl. Clifford Algebr. 11 (2001), 305-318. | DOI | MR | JFM
[10] Karachik, V. V.: Polynomial solutions to systems of partial differential equations with constant coefficients. Yokohama Math. J. 47 (2000), 121-142. | MR | JFM
[11] Karachik, V. V.: Normalized system of functions with respect to the Laplace operator and its applications. J. Math. Anal. Appl. 287 (2003), 577-592. | DOI | MR | JFM
[12] Karachik, V. V.: Method of Normalized Systems of Functions. Izd. Tsentr Yuzhno-Ural'skiĭ Gosudarstvennyĭ Universitet, Chelyabinsk (2014), Russian. | JFM
[13] Karachik, V. V.: Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball. Differ. Equ. 51 (2015), 1033-1042 English. Russian original translation from Differ. Uravn. 51 2015 1038-1047. | DOI | MR | JFM
[14] Karachik, V. V., Turmetov, B.: Solvability of some Neumann-type boundary value problems for biharmonic equations. Electron. J. Differ. Equ. 217 (2017), Paper No. 218, 17 pages. | MR | JFM
[15] Ku, M., Wang, D.: Solutions to the polynomial Dirac equations on unbounded domains in Clifford analysis. Math. Methods Appl. Sci. 34 (2011), 418-427. | DOI | MR | JFM
[16] Ryan, J.: Cauchy-Green type formulae in Clifford analysis. Trans. Am. Math. Soc. 347 (1995), 1331-1341. | DOI | MR | JFM
[17] Sommen, F., Jancewicz, B.: Explicit solutions of the inhomogeneous Dirac equation. J. Anal. Math. 71 (1997), 59-74. | DOI | MR | JFM
[18] Yuan, H. F.: Dirichlet type problems for Dunkl-Poisson equations. Bound. Value Probl. 2016 (2016), Article ID 222, 16 pages. | DOI | MR | JFM
[19] Yuan, H. F.: Solutions of the Poisson equation and related equations in super spinor space. Comput. Methods Funct. Theory 16 (2016), 699-715. | DOI | MR | JFM
[20] Yuan, H. F., Karachik, V. V.: Dunkl-Poisson equation and related equations in superspace. Math. Model. Anal. 20 (2015), 768-781. | DOI | MR
Cité par Sources :