Keywords: complex hyperbolic space; homogeneous real hypersurface; Lie hypersurface; homogeneous ruled real hypersurface; equidistant hypersurface; horosphere; sectional curvature; shape operator; integral curve of the characteristic vector field; holomorphic distributions; homogeneous curve
@article{10_21136_CMJ_2019_0565_17,
author = {Kim, Young Ho and Maeda, Sadahiro and Tanabe, Hiromasa},
title = {Geometric properties of {Lie} hypersurfaces in a complex hyperbolic space},
journal = {Czechoslovak Mathematical Journal},
pages = {983--996},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0565-17},
mrnumber = {4039614},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/}
}
TY - JOUR AU - Kim, Young Ho AU - Maeda, Sadahiro AU - Tanabe, Hiromasa TI - Geometric properties of Lie hypersurfaces in a complex hyperbolic space JO - Czechoslovak Mathematical Journal PY - 2019 SP - 983 EP - 996 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/ DO - 10.21136/CMJ.2019.0565-17 LA - en ID - 10_21136_CMJ_2019_0565_17 ER -
%0 Journal Article %A Kim, Young Ho %A Maeda, Sadahiro %A Tanabe, Hiromasa %T Geometric properties of Lie hypersurfaces in a complex hyperbolic space %J Czechoslovak Mathematical Journal %D 2019 %P 983-996 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/ %R 10.21136/CMJ.2019.0565-17 %G en %F 10_21136_CMJ_2019_0565_17
Kim, Young Ho; Maeda, Sadahiro; Tanabe, Hiromasa. Geometric properties of Lie hypersurfaces in a complex hyperbolic space. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 983-996. doi: 10.21136/CMJ.2019.0565-17
[1] Adachi, T., Bao, T., Maeda, S.: Congruence classes of minimal ruled real hypersurfaces in a nonflat complex space form. Hokkaido Math. J. 43 (2014), 137-150. | DOI | MR | JFM
[2] Berndt, J.: Homogeneous hypersurfaces in hyperbolic spaces. Math. Z. 229 (1998), 589-600. | DOI | MR | JFM
[3] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one. Trans. Am. Math. Soc. 359 (2007), 3425-3438. | DOI | MR | JFM
[4] Chen, B.-Y., Maeda, S.: Hopf hypersurfaces with constant principal curvatures in complex projective or complex hyperbolic spaces. Tokyo J. Math. 24 (2001), 133-152. | DOI | MR | JFM
[5] Hamada, T., Hoshikawa, Y., Tamaru, H.: Curvatures properties of Lie hypersurfaces in the complex hyperbolic space. J. Geom. 103 (2012), 247-261. | DOI | MR | JFM
[6] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space. Math. Z. 202 (1989), 299-311. | DOI | MR | JFM
[7] Kon, S. H., Loo, T.-H.: Real hypersurfaces in a complex space form with {$\eta$}-parallel shape operator. Math. Z. 269 (2011), 47-58. | DOI | MR | JFM
[8] Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms. Geom. Dedicata 74 (1999), 267-286. | DOI | MR | JFM
[9] Maeda, S.: Geometry of the horosphere in a complex hyperbolic space. Differ. Geom. Appl. 29 (2011), s246--s250. | DOI | MR | JFM
[10] Maeda, S., Adachi, T.: Holomorphic helices in a complex space form. Proc. Am. Math. Soc. 125 (1997), 1197-1202. | DOI | MR | JFM
[11] Maeda, S., Adachi, T., Kim, Y. H.: A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space. J. Math. Soc. Japan 61 (2009), 315-325. | DOI | MR | JFM
[12] Maeda, S., Ohnita, Y.: Helical geodesic immersions into complex space forms. Geom. Dedicata 30 (1989), 93-114. | DOI | MR | JFM
[13] Maeda, S., Tanabe, H.: A characterization of the homogeneous ruled real hypersurface in a complex hyperbolic space in terms of the first curvature of some integral curves. Arch. Math. 105 (2015), 593-599. | DOI | MR | JFM
[14] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds. Based on the Workshop on Differential Systems, Submanifolds and Control Theory, Berkeley, CA, USA, 1994 Math. Sci. Res. Inst. Publ. 32, Cambridge University Press, Cambridge (1997), 233-305. | MR | JFM
Cité par Sources :