Geometric properties of Lie hypersurfaces in a complex hyperbolic space
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 983-996
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study homogeneous real hypersurfaces having no focal submanifolds in a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the characteristic vector field and their holomorphic distributions.
We study homogeneous real hypersurfaces having no focal submanifolds in a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the characteristic vector field and their holomorphic distributions.
DOI : 10.21136/CMJ.2019.0565-17
Classification : 53B25, 53C40
Keywords: complex hyperbolic space; homogeneous real hypersurface; Lie hypersurface; homogeneous ruled real hypersurface; equidistant hypersurface; horosphere; sectional curvature; shape operator; integral curve of the characteristic vector field; holomorphic distributions; homogeneous curve
@article{10_21136_CMJ_2019_0565_17,
     author = {Kim, Young Ho and Maeda, Sadahiro and Tanabe, Hiromasa},
     title = {Geometric properties of {Lie} hypersurfaces in a complex hyperbolic space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {983--996},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0565-17},
     mrnumber = {4039614},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/}
}
TY  - JOUR
AU  - Kim, Young Ho
AU  - Maeda, Sadahiro
AU  - Tanabe, Hiromasa
TI  - Geometric properties of Lie hypersurfaces in a complex hyperbolic space
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 983
EP  - 996
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/
DO  - 10.21136/CMJ.2019.0565-17
LA  - en
ID  - 10_21136_CMJ_2019_0565_17
ER  - 
%0 Journal Article
%A Kim, Young Ho
%A Maeda, Sadahiro
%A Tanabe, Hiromasa
%T Geometric properties of Lie hypersurfaces in a complex hyperbolic space
%J Czechoslovak Mathematical Journal
%D 2019
%P 983-996
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/
%R 10.21136/CMJ.2019.0565-17
%G en
%F 10_21136_CMJ_2019_0565_17
Kim, Young Ho; Maeda, Sadahiro; Tanabe, Hiromasa. Geometric properties of Lie hypersurfaces in a complex hyperbolic space. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 983-996. doi: 10.21136/CMJ.2019.0565-17

[1] Adachi, T., Bao, T., Maeda, S.: Congruence classes of minimal ruled real hypersurfaces in a nonflat complex space form. Hokkaido Math. J. 43 (2014), 137-150. | DOI | MR | JFM

[2] Berndt, J.: Homogeneous hypersurfaces in hyperbolic spaces. Math. Z. 229 (1998), 589-600. | DOI | MR | JFM

[3] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one. Trans. Am. Math. Soc. 359 (2007), 3425-3438. | DOI | MR | JFM

[4] Chen, B.-Y., Maeda, S.: Hopf hypersurfaces with constant principal curvatures in complex projective or complex hyperbolic spaces. Tokyo J. Math. 24 (2001), 133-152. | DOI | MR | JFM

[5] Hamada, T., Hoshikawa, Y., Tamaru, H.: Curvatures properties of Lie hypersurfaces in the complex hyperbolic space. J. Geom. 103 (2012), 247-261. | DOI | MR | JFM

[6] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space. Math. Z. 202 (1989), 299-311. | DOI | MR | JFM

[7] Kon, S. H., Loo, T.-H.: Real hypersurfaces in a complex space form with {$\eta$}-parallel shape operator. Math. Z. 269 (2011), 47-58. | DOI | MR | JFM

[8] Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms. Geom. Dedicata 74 (1999), 267-286. | DOI | MR | JFM

[9] Maeda, S.: Geometry of the horosphere in a complex hyperbolic space. Differ. Geom. Appl. 29 (2011), s246--s250. | DOI | MR | JFM

[10] Maeda, S., Adachi, T.: Holomorphic helices in a complex space form. Proc. Am. Math. Soc. 125 (1997), 1197-1202. | DOI | MR | JFM

[11] Maeda, S., Adachi, T., Kim, Y. H.: A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space. J. Math. Soc. Japan 61 (2009), 315-325. | DOI | MR | JFM

[12] Maeda, S., Ohnita, Y.: Helical geodesic immersions into complex space forms. Geom. Dedicata 30 (1989), 93-114. | DOI | MR | JFM

[13] Maeda, S., Tanabe, H.: A characterization of the homogeneous ruled real hypersurface in a complex hyperbolic space in terms of the first curvature of some integral curves. Arch. Math. 105 (2015), 593-599. | DOI | MR | JFM

[14] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds. Based on the Workshop on Differential Systems, Submanifolds and Control Theory, Berkeley, CA, USA, 1994 Math. Sci. Res. Inst. Publ. 32, Cambridge University Press, Cambridge (1997), 233-305. | MR | JFM

Cité par Sources :