Geometric properties of Lie hypersurfaces in a complex hyperbolic space
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 983-996.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study homogeneous real hypersurfaces having no focal submanifolds in a complex hyperbolic space. They are called Lie hypersurfaces in this space. We clarify the geometry of Lie hypersurfaces in terms of their sectional curvatures, the behavior of the characteristic vector field and their holomorphic distributions.
DOI : 10.21136/CMJ.2019.0565-17
Classification : 53B25, 53C40
Keywords: complex hyperbolic space; homogeneous real hypersurface; Lie hypersurface; homogeneous ruled real hypersurface; equidistant hypersurface; horosphere; sectional curvature; shape operator; integral curve of the characteristic vector field; holomorphic distributions; homogeneous curve
@article{10_21136_CMJ_2019_0565_17,
     author = {Kim, Young Ho and Maeda, Sadahiro and Tanabe, Hiromasa},
     title = {Geometric properties of {Lie} hypersurfaces in a complex hyperbolic space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {983--996},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2019.0565-17},
     mrnumber = {4039614},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/}
}
TY  - JOUR
AU  - Kim, Young Ho
AU  - Maeda, Sadahiro
AU  - Tanabe, Hiromasa
TI  - Geometric properties of Lie hypersurfaces in a complex hyperbolic space
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 983
EP  - 996
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/
DO  - 10.21136/CMJ.2019.0565-17
LA  - en
ID  - 10_21136_CMJ_2019_0565_17
ER  - 
%0 Journal Article
%A Kim, Young Ho
%A Maeda, Sadahiro
%A Tanabe, Hiromasa
%T Geometric properties of Lie hypersurfaces in a complex hyperbolic space
%J Czechoslovak Mathematical Journal
%D 2019
%P 983-996
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/
%R 10.21136/CMJ.2019.0565-17
%G en
%F 10_21136_CMJ_2019_0565_17
Kim, Young Ho; Maeda, Sadahiro; Tanabe, Hiromasa. Geometric properties of Lie hypersurfaces in a complex hyperbolic space. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 983-996. doi : 10.21136/CMJ.2019.0565-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0565-17/

Cité par Sources :