Keywords: locally symmetric Riemannian space; closed $H$-hypersurface; strong stability; first stability eigenvalue
@article{10_21136_CMJ_2019_0562_17,
author = {de Lima, Eudes L. and de Lima, Henrique F. and dos Santos, F\'abio R. and Vel\'asquez, Marco A. L.},
title = {Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {969--981},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0562-17},
mrnumber = {4039613},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0562-17/}
}
TY - JOUR AU - de Lima, Eudes L. AU - de Lima, Henrique F. AU - dos Santos, Fábio R. AU - Velásquez, Marco A. L. TI - Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces JO - Czechoslovak Mathematical Journal PY - 2019 SP - 969 EP - 981 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0562-17/ DO - 10.21136/CMJ.2019.0562-17 LA - en ID - 10_21136_CMJ_2019_0562_17 ER -
%0 Journal Article %A de Lima, Eudes L. %A de Lima, Henrique F. %A dos Santos, Fábio R. %A Velásquez, Marco A. L. %T Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces %J Czechoslovak Mathematical Journal %D 2019 %P 969-981 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0562-17/ %R 10.21136/CMJ.2019.0562-17 %G en %F 10_21136_CMJ_2019_0562_17
de Lima, Eudes L.; de Lima, Henrique F.; dos Santos, Fábio R.; Velásquez, Marco A. L. Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 969-981. doi: 10.21136/CMJ.2019.0562-17
[1] Alencar, H., Carmo, M. P. do: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120 (1994), 1223-1229. | DOI | MR | JFM
[2] Alías, L. J., Barros, A., Jr., A. Brasil: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Am. Math. Soc. 133 (2005), 875-884. | DOI | MR | JFM
[3] Alías, L. J., Jr., A. Brasil, Perdomo, O.: On the stability index of hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 135 (2007), 3685-3693. | DOI | MR | JFM
[4] Alías, L. J., Lima, H. F. de, Meléndez, J., Santos, F. R. dos: Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds. Math. Nachr. 289 (2016), 1309-1324. | DOI | MR | JFM
[5] Alías, L. J., Kurose, T., Solanes, G.: Hadamard-type theorems for hypersurfaces in hyperbolic spaces. Differ. Geom. Appl. 24 (2006), 492-502. | DOI | MR | JFM
[6] Alías, L. J., Meroño, M. A., Ortiz, I.: On the first stability eigenvalue of constant mean curvature surfaces into homogeneous 3-manifolds. Mediterr. J. Math. 12 (2015), 147-158. | DOI | MR | JFM
[7] Barros, A. A. de, Jr., A. C. Brasil, Jr., L. A. M. de Sousa: A new characterization of submanifolds with parallel mean curvature vector in $\mathbb{S}^{n + p}$. Kodai Math. J. 27 (2004), 45-56. | DOI | MR | JFM
[8] Gomes, J. N., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L.: Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133 (2016), 15-27. | DOI | MR | JFM
[9] Melendéz, J.: Rigidity theorems for hypersurfaces with constant mean curvature. Bull. Braz. Math. Soc. 45 (2014), 385-404. | DOI | MR | JFM
[10] Meroño, M. A., Ortiz, I.: Eigenvalue estimates for the stability operator of CMC compact surfaces in three-dimensional warped products. J. Math. Anal. Appl. 434 (2016), 1779-1788. | DOI | MR | JFM
[11] Meroño, M. A., Ortiz, I.: On the first stability eigenvalue of CMC surfaces into warped products with two-dimensional fiber. Differ. Geom. Appl. 45 (2016), 67-77. | DOI | MR | JFM
[12] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Am. J. Math. 96 (1974), 207-213. | DOI | MR | JFM
[13] Perdomo,, O.: First stability eigenvalue characterization of Clifford hypersurfaces. Proc. Am. Math. Soc. 130 (2002), 3379-3384. | DOI | MR | JFM
[14] Simons, J.: Minimal varietes in Riemannian manifolds. Ann. Math. 88 (1968), 62-105. | DOI | MR | JFM
[15] Velásquez, M. A. L., Lima, H. F. de, Santos, F. R. dos, Aquino, C. P.: On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605-616. | DOI | MR
[16] Wu, C.: New characterization of the Clifford tori and the Veronese surface. Arch. Math. 61 (1993), 277-284. | DOI | MR | JFM
Cité par Sources :