Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 969-981
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this article is to obtain sharp estimates for the first eigenvalue of the stability operator of constant mean curvature closed hypersurfaces immersed into locally symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in particular, a Riemannian space with constant sectional curvature). As an application, we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient spaces.
The purpose of this article is to obtain sharp estimates for the first eigenvalue of the stability operator of constant mean curvature closed hypersurfaces immersed into locally symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in particular, a Riemannian space with constant sectional curvature). As an application, we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient spaces.
DOI : 10.21136/CMJ.2019.0562-17
Classification : 53A10, 53C42
Keywords: locally symmetric Riemannian space; closed $H$-hypersurface; strong stability; first stability eigenvalue
@article{10_21136_CMJ_2019_0562_17,
     author = {de Lima, Eudes L. and de Lima, Henrique F. and dos Santos, F\'abio R. and Vel\'asquez, Marco A. L.},
     title = {Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {969--981},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0562-17},
     mrnumber = {4039613},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0562-17/}
}
TY  - JOUR
AU  - de Lima, Eudes L.
AU  - de Lima, Henrique F.
AU  - dos Santos, Fábio R.
AU  - Velásquez, Marco A. L.
TI  - Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 969
EP  - 981
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0562-17/
DO  - 10.21136/CMJ.2019.0562-17
LA  - en
ID  - 10_21136_CMJ_2019_0562_17
ER  - 
%0 Journal Article
%A de Lima, Eudes L.
%A de Lima, Henrique F.
%A dos Santos, Fábio R.
%A Velásquez, Marco A. L.
%T Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces
%J Czechoslovak Mathematical Journal
%D 2019
%P 969-981
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0562-17/
%R 10.21136/CMJ.2019.0562-17
%G en
%F 10_21136_CMJ_2019_0562_17
de Lima, Eudes L.; de Lima, Henrique F.; dos Santos, Fábio R.; Velásquez, Marco A. L. Sharp eigenvalue estimates of closed $H$-hypersurfaces in locally symmetric spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 969-981. doi: 10.21136/CMJ.2019.0562-17

[1] Alencar, H., Carmo, M. P. do: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120 (1994), 1223-1229. | DOI | MR | JFM

[2] Alías, L. J., Barros, A., Jr., A. Brasil: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Am. Math. Soc. 133 (2005), 875-884. | DOI | MR | JFM

[3] Alías, L. J., Jr., A. Brasil, Perdomo, O.: On the stability index of hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 135 (2007), 3685-3693. | DOI | MR | JFM

[4] Alías, L. J., Lima, H. F. de, Meléndez, J., Santos, F. R. dos: Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds. Math. Nachr. 289 (2016), 1309-1324. | DOI | MR | JFM

[5] Alías, L. J., Kurose, T., Solanes, G.: Hadamard-type theorems for hypersurfaces in hyperbolic spaces. Differ. Geom. Appl. 24 (2006), 492-502. | DOI | MR | JFM

[6] Alías, L. J., Meroño, M. A., Ortiz, I.: On the first stability eigenvalue of constant mean curvature surfaces into homogeneous 3-manifolds. Mediterr. J. Math. 12 (2015), 147-158. | DOI | MR | JFM

[7] Barros, A. A. de, Jr., A. C. Brasil, Jr., L. A. M. de Sousa: A new characterization of submanifolds with parallel mean curvature vector in $\mathbb{S}^{n + p}$. Kodai Math. J. 27 (2004), 45-56. | DOI | MR | JFM

[8] Gomes, J. N., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L.: Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133 (2016), 15-27. | DOI | MR | JFM

[9] Melendéz, J.: Rigidity theorems for hypersurfaces with constant mean curvature. Bull. Braz. Math. Soc. 45 (2014), 385-404. | DOI | MR | JFM

[10] Meroño, M. A., Ortiz, I.: Eigenvalue estimates for the stability operator of CMC compact surfaces in three-dimensional warped products. J. Math. Anal. Appl. 434 (2016), 1779-1788. | DOI | MR | JFM

[11] Meroño, M. A., Ortiz, I.: On the first stability eigenvalue of CMC surfaces into warped products with two-dimensional fiber. Differ. Geom. Appl. 45 (2016), 67-77. | DOI | MR | JFM

[12] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Am. J. Math. 96 (1974), 207-213. | DOI | MR | JFM

[13] Perdomo,, O.: First stability eigenvalue characterization of Clifford hypersurfaces. Proc. Am. Math. Soc. 130 (2002), 3379-3384. | DOI | MR | JFM

[14] Simons, J.: Minimal varietes in Riemannian manifolds. Ann. Math. 88 (1968), 62-105. | DOI | MR | JFM

[15] Velásquez, M. A. L., Lima, H. F. de, Santos, F. R. dos, Aquino, C. P.: On the first stability eigenvalue of hypersurfaces in the Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605-616. | DOI | MR

[16] Wu, C.: New characterization of the Clifford tori and the Veronese surface. Arch. Math. 61 (1993), 277-284. | DOI | MR | JFM

Cité par Sources :