The duality of Auslander-Reiten quiver of path algebras
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 925-943
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\Bbbk {Q})$ a finite abelian group, $\widehat {Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\Bbbk Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\Bbbk \widehat {Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$.
Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\Bbbk {Q})$ a finite abelian group, $\widehat {Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\Bbbk Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\Bbbk \widehat {Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$.
DOI :
10.21136/CMJ.2019.0541-17
Classification :
16G10, 16G20, 16G70
Keywords: Auslander-Reiten quiver; generalized McKay quiver; duality
Keywords: Auslander-Reiten quiver; generalized McKay quiver; duality
@article{10_21136_CMJ_2019_0541_17,
author = {Hou, Bo and Yang, Shilin},
title = {The duality of {Auslander-Reiten} quiver of path algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {925--943},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0541-17},
mrnumber = {4039610},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/}
}
TY - JOUR AU - Hou, Bo AU - Yang, Shilin TI - The duality of Auslander-Reiten quiver of path algebras JO - Czechoslovak Mathematical Journal PY - 2019 SP - 925 EP - 943 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/ DO - 10.21136/CMJ.2019.0541-17 LA - en ID - 10_21136_CMJ_2019_0541_17 ER -
%0 Journal Article %A Hou, Bo %A Yang, Shilin %T The duality of Auslander-Reiten quiver of path algebras %J Czechoslovak Mathematical Journal %D 2019 %P 925-943 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/ %R 10.21136/CMJ.2019.0541-17 %G en %F 10_21136_CMJ_2019_0541_17
Hou, Bo; Yang, Shilin. The duality of Auslander-Reiten quiver of path algebras. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 925-943. doi: 10.21136/CMJ.2019.0541-17
Cité par Sources :