The duality of Auslander-Reiten quiver of path algebras
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 925-943
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\Bbbk {Q})$ a finite abelian group, $\widehat {Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\Bbbk Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\Bbbk \widehat {Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$.
Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\Bbbk {Q})$ a finite abelian group, $\widehat {Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\Bbbk Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\Bbbk \widehat {Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$.
DOI : 10.21136/CMJ.2019.0541-17
Classification : 16G10, 16G20, 16G70
Keywords: Auslander-Reiten quiver; generalized McKay quiver; duality
@article{10_21136_CMJ_2019_0541_17,
     author = {Hou, Bo and Yang, Shilin},
     title = {The duality of {Auslander-Reiten} quiver of path algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {925--943},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0541-17},
     mrnumber = {4039610},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/}
}
TY  - JOUR
AU  - Hou, Bo
AU  - Yang, Shilin
TI  - The duality of Auslander-Reiten quiver of path algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 925
EP  - 943
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/
DO  - 10.21136/CMJ.2019.0541-17
LA  - en
ID  - 10_21136_CMJ_2019_0541_17
ER  - 
%0 Journal Article
%A Hou, Bo
%A Yang, Shilin
%T The duality of Auslander-Reiten quiver of path algebras
%J Czechoslovak Mathematical Journal
%D 2019
%P 925-943
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/
%R 10.21136/CMJ.2019.0541-17
%G en
%F 10_21136_CMJ_2019_0541_17
Hou, Bo; Yang, Shilin. The duality of Auslander-Reiten quiver of path algebras. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 925-943. doi: 10.21136/CMJ.2019.0541-17

[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[3] Demonet, L.: Skew group algebras of path algebras and preprojective algebras. J. Algebra 323 (2010), 1052-1059. | DOI | MR | JFM

[4] Deng, B., Du, J.: Frobenius morphisms and representations of algebras. Trans. Am. Math. Soc. 358 (2006), 3591-3622. | DOI | MR | JFM

[5] Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs 150. American Mathematical Society, Providence (2008). | DOI | MR | JFM

[6] Gabriel, P., Roĭter, A. V.: Algebra VIII. Representations of Finite-Dimensional Algebras. Encyclopaedia of Mathematical Sciences 73. Springer, Berlin A. I. Kostrikin, et al. (1992). | MR | JFM

[7] Guo, J.: On the McKay quivers and $m$-Cartan matrices. Sci. China, Ser. A 52 (2009), 511-516. | DOI | MR | JFM

[8] Hou, B., Yang, S.: Skew group algebras of deformed preprojective algebras. J. Algebra 332 (2011), 209-228. | DOI | MR | JFM

[9] Hou, B., Yang, S.: Generalized McKay quivers, root system and Kac-Moody algebras. J. Korean Math. Soc. 52 (2015), 239-268. | DOI | MR | JFM

[10] Hubery, A.: Representations of Quiver Respecting a Quiver Automorphism and a Theorem of Kac. Ph.D. Thesis, University of Leeds, Leeds (2002). | MR

[11] Hubery, A.: Quiver representations respecting a quiver automorphism: a generalization of a theorem of Kac. J. Lond. Math. Soc., II. Ser. 69 (2004), 79-96. | DOI | MR | JFM

[12] Kac, V. G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990). | DOI | MR | JFM

[13] Liu, G. X.: Classification of Finite Dimensional Basic Hopf Algebras and Related Topics. Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou (2005).

[14] McKay, J.: Graphs, singularities, and finite groups. The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 American Mathematical Society, Providence (1980), 183-186. | DOI | MR | JFM

[15] Reiten, I., Riedtmann, C.: Skew group algebras in the representation theory of Artin algebras. J. Algebra 92 (1985), 224-282. | DOI | MR | JFM

[16] Zhang, M.: The dual quiver of the Auslander-Reiten quiver of path algebras. Algebr. Represent. Theory 15 (2012), 203-210. | DOI | MR | JFM

[17] Zhang, M., Li, F.: Representations of skew group algebras induced from isomorphically invariant modules over path algebras. J. Algebra 321 (2009), 567-581. | DOI | MR | JFM

Cité par Sources :