Keywords: Auslander-Reiten quiver; generalized McKay quiver; duality
@article{10_21136_CMJ_2019_0541_17,
author = {Hou, Bo and Yang, Shilin},
title = {The duality of {Auslander-Reiten} quiver of path algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {925--943},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0541-17},
mrnumber = {4039610},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/}
}
TY - JOUR AU - Hou, Bo AU - Yang, Shilin TI - The duality of Auslander-Reiten quiver of path algebras JO - Czechoslovak Mathematical Journal PY - 2019 SP - 925 EP - 943 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/ DO - 10.21136/CMJ.2019.0541-17 LA - en ID - 10_21136_CMJ_2019_0541_17 ER -
%0 Journal Article %A Hou, Bo %A Yang, Shilin %T The duality of Auslander-Reiten quiver of path algebras %J Czechoslovak Mathematical Journal %D 2019 %P 925-943 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/ %R 10.21136/CMJ.2019.0541-17 %G en %F 10_21136_CMJ_2019_0541_17
Hou, Bo; Yang, Shilin. The duality of Auslander-Reiten quiver of path algebras. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 925-943. doi: 10.21136/CMJ.2019.0541-17
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM
[3] Demonet, L.: Skew group algebras of path algebras and preprojective algebras. J. Algebra 323 (2010), 1052-1059. | DOI | MR | JFM
[4] Deng, B., Du, J.: Frobenius morphisms and representations of algebras. Trans. Am. Math. Soc. 358 (2006), 3591-3622. | DOI | MR | JFM
[5] Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs 150. American Mathematical Society, Providence (2008). | DOI | MR | JFM
[6] Gabriel, P., Roĭter, A. V.: Algebra VIII. Representations of Finite-Dimensional Algebras. Encyclopaedia of Mathematical Sciences 73. Springer, Berlin A. I. Kostrikin, et al. (1992). | MR | JFM
[7] Guo, J.: On the McKay quivers and $m$-Cartan matrices. Sci. China, Ser. A 52 (2009), 511-516. | DOI | MR | JFM
[8] Hou, B., Yang, S.: Skew group algebras of deformed preprojective algebras. J. Algebra 332 (2011), 209-228. | DOI | MR | JFM
[9] Hou, B., Yang, S.: Generalized McKay quivers, root system and Kac-Moody algebras. J. Korean Math. Soc. 52 (2015), 239-268. | DOI | MR | JFM
[10] Hubery, A.: Representations of Quiver Respecting a Quiver Automorphism and a Theorem of Kac. Ph.D. Thesis, University of Leeds, Leeds (2002). | MR
[11] Hubery, A.: Quiver representations respecting a quiver automorphism: a generalization of a theorem of Kac. J. Lond. Math. Soc., II. Ser. 69 (2004), 79-96. | DOI | MR | JFM
[12] Kac, V. G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990). | DOI | MR | JFM
[13] Liu, G. X.: Classification of Finite Dimensional Basic Hopf Algebras and Related Topics. Dissertation for the Doctoral Degree, Zhejiang University, Hangzhou (2005).
[14] McKay, J.: Graphs, singularities, and finite groups. The Santa Cruz Conference on Finite Groups, Proc. Sympos. Pure Math. 37 American Mathematical Society, Providence (1980), 183-186. | DOI | MR | JFM
[15] Reiten, I., Riedtmann, C.: Skew group algebras in the representation theory of Artin algebras. J. Algebra 92 (1985), 224-282. | DOI | MR | JFM
[16] Zhang, M.: The dual quiver of the Auslander-Reiten quiver of path algebras. Algebr. Represent. Theory 15 (2012), 203-210. | DOI | MR | JFM
[17] Zhang, M., Li, F.: Representations of skew group algebras induced from isomorphically invariant modules over path algebras. J. Algebra 321 (2009), 567-581. | DOI | MR | JFM
Cité par Sources :