The duality of Auslander-Reiten quiver of path algebras
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 925-943.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $Q$ be a finite union of Dynkin quivers, $G\subseteq {\rm Aut}(\Bbbk {Q})$ a finite abelian group, $\widehat {Q}$ the generalized McKay quiver of $(Q, G)$ and $\Gamma _{Q}$ the Auslander-Reiten quiver of $\Bbbk Q$. Then $G$ acts functorially on the quiver $\Gamma _{Q}$. We show that the Auslander-Reiten quiver of $\Bbbk \widehat {Q}$ coincides with the generalized McKay quiver of $(\Gamma _{Q}, G)$.
DOI : 10.21136/CMJ.2019.0541-17
Classification : 16G10, 16G20, 16G70
Keywords: Auslander-Reiten quiver; generalized McKay quiver; duality
@article{10_21136_CMJ_2019_0541_17,
     author = {Hou, Bo and Yang, Shilin},
     title = {The duality of {Auslander-Reiten} quiver of path algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {925--943},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.21136/CMJ.2019.0541-17},
     mrnumber = {4039610},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/}
}
TY  - JOUR
AU  - Hou, Bo
AU  - Yang, Shilin
TI  - The duality of Auslander-Reiten quiver of path algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 925
EP  - 943
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/
DO  - 10.21136/CMJ.2019.0541-17
LA  - en
ID  - 10_21136_CMJ_2019_0541_17
ER  - 
%0 Journal Article
%A Hou, Bo
%A Yang, Shilin
%T The duality of Auslander-Reiten quiver of path algebras
%J Czechoslovak Mathematical Journal
%D 2019
%P 925-943
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/
%R 10.21136/CMJ.2019.0541-17
%G en
%F 10_21136_CMJ_2019_0541_17
Hou, Bo; Yang, Shilin. The duality of Auslander-Reiten quiver of path algebras. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 925-943. doi : 10.21136/CMJ.2019.0541-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0541-17/

Cité par Sources :