Keywords: harmonic vector field; harmonic map; oscillator group
@article{10_21136_CMJ_2019_0538_17,
author = {Xu, Na and Tan, Ju},
title = {Invariant harmonic unit vector fields on the oscillator groups},
journal = {Czechoslovak Mathematical Journal},
pages = {907--924},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0538-17},
mrnumber = {4039609},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0538-17/}
}
TY - JOUR AU - Xu, Na AU - Tan, Ju TI - Invariant harmonic unit vector fields on the oscillator groups JO - Czechoslovak Mathematical Journal PY - 2019 SP - 907 EP - 924 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0538-17/ DO - 10.21136/CMJ.2019.0538-17 LA - en ID - 10_21136_CMJ_2019_0538_17 ER -
%0 Journal Article %A Xu, Na %A Tan, Ju %T Invariant harmonic unit vector fields on the oscillator groups %J Czechoslovak Mathematical Journal %D 2019 %P 907-924 %V 69 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0538-17/ %R 10.21136/CMJ.2019.0538-17 %G en %F 10_21136_CMJ_2019_0538_17
Xu, Na; Tan, Ju. Invariant harmonic unit vector fields on the oscillator groups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 907-924. doi: 10.21136/CMJ.2019.0538-17
[1] Boeckx, E., Vanhecke, L.: Harmonic and minimal vector fields on tangent and unit tangent bundles. Differ. Geom. Appl. 13 (2000), 77-93. | DOI | MR | JFM
[2] Boeckx, E., Vanhecke, L.: Harmonic and minimal radial vector fields. Acta Math. Hung. 90 (2001), 317-331. | DOI | MR | JFM
[3] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics 120, Academic Press, Orlando (1986). | DOI | MR | JFM
[4] Boucetta, M., Medina, A.: Solutions of the Yang-Baxter equations on quadratic Lie groups: the case of oscillator groups. J. Geom. Phys. 61 (2011), 2309-2320. | DOI | MR | JFM
[5] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Cent. Eur. J. Math. 10 (2012), 411-425. | DOI | MR | JFM
[6] Díaz, R. D., Gadea, P. M., Oubiña, J. A.: Reductive decompositions and Einstein-Yang-Mills equations associated to the oscillator group. J. Math. Phys. 40 (1999), 3490-3498. | DOI | MR | JFM
[7] Gadea, P. M., Oubiña, J. A.: Homogeneous Lorentzian structures on the oscillator groups. Arch. Math. 73 (1999), 311-320. | DOI | MR | JFM
[8] Gil-Medrano, O.: Relationship between volume and energy of vector fields. Differ. Geom. Appl. 15 (2001), 137-152. | DOI | MR | JFM
[9] González-Dávila, J. C., Vanhecke, L.: Examples of minimal unit vector fields. Ann. Global Anal. Geom. 18 (2000), 385-404. | DOI | MR | JFM
[10] González-Dávila, J. C., Vanhecke, L.: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds. J. Geom. 72 (2001), 65-76. | DOI | MR | JFM
[11] González-Dávila, J. C., Vanhecke, L.: Energy and volume of unit vector fields on three-dimensional Riemannian manifolds. Differ. Geom. Appl. 16 (2002), 225-244. | DOI | MR | JFM
[12] Levichev, A. V.: Chronogeometry of an electromagnetic wave given by a bi-invariant metric on the oscillator group. Sib. Math. J. 27 (1986), 237-245 English. Russian original translation from Sib. Mat. Zh. 27 1986 117-126. | DOI | MR | JFM
[13] Medina, A.: Groupes de Lie munis de métriques bi-invariantes. Tohoku Math. J. 2 37 French (1985), 405-421. | DOI | MR | JFM
[14] Milnor, J. W.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293-329. | DOI | MR | JFM
[15] Onda, K.: Examples of algebraic Ricci solitons in the pseudo-Riemannian case. Acta Math. Hung. 144 (2014), 247-265. | DOI | MR | JFM
[16] Tsukada, K., Vanhecke, L.: Minimality and harmonicity for Hopf vector fields. Ill. J. Math. 45 (2001), 441-451. | DOI | MR | JFM
[17] Vanhecke, L., González-Dávila, J. C.: Invariant harmonic unit vector fields on Lie groups. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 377-403. | MR | JFM
[18] Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303 (1995), 325-344. | DOI | MR | JFM
Cité par Sources :