Invariant harmonic unit vector fields on the oscillator groups
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 907-924
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$.
We find all the left-invariant harmonic unit vector fields on the oscillator groups. Besides, we determine the associated harmonic maps from the oscillator group into its unit tangent bundle equipped with the associated Sasaki metric. Moreover, we investigate the stability and instability of harmonic unit vector fields on compact quotients of four dimensional oscillator group $G_1(1)$.
DOI : 10.21136/CMJ.2019.0538-17
Classification : 53C25, 53C43
Keywords: harmonic vector field; harmonic map; oscillator group
@article{10_21136_CMJ_2019_0538_17,
     author = {Xu, Na and Tan, Ju},
     title = {Invariant harmonic unit vector fields on the oscillator groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {907--924},
     year = {2019},
     volume = {69},
     number = {4},
     doi = {10.21136/CMJ.2019.0538-17},
     mrnumber = {4039609},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0538-17/}
}
TY  - JOUR
AU  - Xu, Na
AU  - Tan, Ju
TI  - Invariant harmonic unit vector fields on the oscillator groups
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 907
EP  - 924
VL  - 69
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0538-17/
DO  - 10.21136/CMJ.2019.0538-17
LA  - en
ID  - 10_21136_CMJ_2019_0538_17
ER  - 
%0 Journal Article
%A Xu, Na
%A Tan, Ju
%T Invariant harmonic unit vector fields on the oscillator groups
%J Czechoslovak Mathematical Journal
%D 2019
%P 907-924
%V 69
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0538-17/
%R 10.21136/CMJ.2019.0538-17
%G en
%F 10_21136_CMJ_2019_0538_17
Xu, Na; Tan, Ju. Invariant harmonic unit vector fields on the oscillator groups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 907-924. doi: 10.21136/CMJ.2019.0538-17

[1] Boeckx, E., Vanhecke, L.: Harmonic and minimal vector fields on tangent and unit tangent bundles. Differ. Geom. Appl. 13 (2000), 77-93. | DOI | MR | JFM

[2] Boeckx, E., Vanhecke, L.: Harmonic and minimal radial vector fields. Acta Math. Hung. 90 (2001), 317-331. | DOI | MR | JFM

[3] Boothby, W. M.: An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics 120, Academic Press, Orlando (1986). | DOI | MR | JFM

[4] Boucetta, M., Medina, A.: Solutions of the Yang-Baxter equations on quadratic Lie groups: the case of oscillator groups. J. Geom. Phys. 61 (2011), 2309-2320. | DOI | MR | JFM

[5] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Cent. Eur. J. Math. 10 (2012), 411-425. | DOI | MR | JFM

[6] Díaz, R. D., Gadea, P. M., Oubiña, J. A.: Reductive decompositions and Einstein-Yang-Mills equations associated to the oscillator group. J. Math. Phys. 40 (1999), 3490-3498. | DOI | MR | JFM

[7] Gadea, P. M., Oubiña, J. A.: Homogeneous Lorentzian structures on the oscillator groups. Arch. Math. 73 (1999), 311-320. | DOI | MR | JFM

[8] Gil-Medrano, O.: Relationship between volume and energy of vector fields. Differ. Geom. Appl. 15 (2001), 137-152. | DOI | MR | JFM

[9] González-Dávila, J. C., Vanhecke, L.: Examples of minimal unit vector fields. Ann. Global Anal. Geom. 18 (2000), 385-404. | DOI | MR | JFM

[10] González-Dávila, J. C., Vanhecke, L.: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds. J. Geom. 72 (2001), 65-76. | DOI | MR | JFM

[11] González-Dávila, J. C., Vanhecke, L.: Energy and volume of unit vector fields on three-dimensional Riemannian manifolds. Differ. Geom. Appl. 16 (2002), 225-244. | DOI | MR | JFM

[12] Levichev, A. V.: Chronogeometry of an electromagnetic wave given by a bi-invariant metric on the oscillator group. Sib. Math. J. 27 (1986), 237-245 English. Russian original translation from Sib. Mat. Zh. 27 1986 117-126. | DOI | MR | JFM

[13] Medina, A.: Groupes de Lie munis de métriques bi-invariantes. Tohoku Math. J. 2 37 French (1985), 405-421. | DOI | MR | JFM

[14] Milnor, J. W.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293-329. | DOI | MR | JFM

[15] Onda, K.: Examples of algebraic Ricci solitons in the pseudo-Riemannian case. Acta Math. Hung. 144 (2014), 247-265. | DOI | MR | JFM

[16] Tsukada, K., Vanhecke, L.: Minimality and harmonicity for Hopf vector fields. Ill. J. Math. 45 (2001), 441-451. | DOI | MR | JFM

[17] Vanhecke, L., González-Dávila, J. C.: Invariant harmonic unit vector fields on Lie groups. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 377-403. | MR | JFM

[18] Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303 (1995), 325-344. | DOI | MR | JFM

Cité par Sources :