Keywords: Allen-Cahn system; weak-strong uniqueness
@article{10_21136_CMJ_2019_0520_17,
author = {Ho\v{s}ek, Radim and M\'acha, V\'aclav},
title = {Weak-strong uniqueness for {Navier-Stokes/Allen-Cahn} system},
journal = {Czechoslovak Mathematical Journal},
pages = {837--851},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2019.0520-17},
mrnumber = {3989281},
zbl = {07088819},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0520-17/}
}
TY - JOUR AU - Hošek, Radim AU - Mácha, Václav TI - Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system JO - Czechoslovak Mathematical Journal PY - 2019 SP - 837 EP - 851 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0520-17/ DO - 10.21136/CMJ.2019.0520-17 LA - en ID - 10_21136_CMJ_2019_0520_17 ER -
%0 Journal Article %A Hošek, Radim %A Mácha, Václav %T Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system %J Czechoslovak Mathematical Journal %D 2019 %P 837-851 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0520-17/ %R 10.21136/CMJ.2019.0520-17 %G en %F 10_21136_CMJ_2019_0520_17
Hošek, Radim; Mácha, Václav. Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 837-851. doi: 10.21136/CMJ.2019.0520-17
[1] Březina, J., Kreml, O., Mácha, V.: Dimension reduction for the full Navier-Stokes-Fourier system. J. Math. Fluid Mech. 19 (2017), 659-683. | DOI | MR | JFM
[2] Dafermos, C. M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70 (1979), 167-179. | DOI | MR | JFM
[3] Ducomet, B., Nečasová, Š.: Diffusion limits in a model of radiative flow. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61 (2015), 17-59. | DOI | MR | JFM
[4] Feireisl, E., Jin, B. J., Novotný, A.: Inviscid incompressible limits of strongly stratified fluids. Asymptotic Anal. 89 (2014), 307-329. | DOI | MR | JFM
[5] Feireisl, E., Klein, R., Novotný, A., Zatorska, E.: On singular limits arising in the scale analysis of stratified fluid flows. Math. Models Methods Appl. Sci. 26 (2016), 419-443. | DOI | MR | JFM
[6] Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012), 683-706. | DOI | MR | JFM
[7] Lin, F.-H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48 (1995), 501-537. | DOI | MR | JFM
[8] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). | DOI | MR | JFM
[9] Zhao, L., Guo, B., Huang, H.: Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system. J. Math. Anal. Appl. 384 (2011), 232-245. | DOI | MR | JFM
Cité par Sources :