Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 837-851
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy method.
The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy method.
DOI : 10.21136/CMJ.2019.0520-17
Classification : 35A02, 35B65
Keywords: Allen-Cahn system; weak-strong uniqueness
@article{10_21136_CMJ_2019_0520_17,
     author = {Ho\v{s}ek, Radim and M\'acha, V\'aclav},
     title = {Weak-strong uniqueness for {Navier-Stokes/Allen-Cahn} system},
     journal = {Czechoslovak Mathematical Journal},
     pages = {837--851},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2019.0520-17},
     mrnumber = {3989281},
     zbl = {07088819},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0520-17/}
}
TY  - JOUR
AU  - Hošek, Radim
AU  - Mácha, Václav
TI  - Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 837
EP  - 851
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0520-17/
DO  - 10.21136/CMJ.2019.0520-17
LA  - en
ID  - 10_21136_CMJ_2019_0520_17
ER  - 
%0 Journal Article
%A Hošek, Radim
%A Mácha, Václav
%T Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system
%J Czechoslovak Mathematical Journal
%D 2019
%P 837-851
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0520-17/
%R 10.21136/CMJ.2019.0520-17
%G en
%F 10_21136_CMJ_2019_0520_17
Hošek, Radim; Mácha, Václav. Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 837-851. doi: 10.21136/CMJ.2019.0520-17

[1] Březina, J., Kreml, O., Mácha, V.: Dimension reduction for the full Navier-Stokes-Fourier system. J. Math. Fluid Mech. 19 (2017), 659-683. | DOI | MR | JFM

[2] Dafermos, C. M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70 (1979), 167-179. | DOI | MR | JFM

[3] Ducomet, B., Nečasová, Š.: Diffusion limits in a model of radiative flow. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 61 (2015), 17-59. | DOI | MR | JFM

[4] Feireisl, E., Jin, B. J., Novotný, A.: Inviscid incompressible limits of strongly stratified fluids. Asymptotic Anal. 89 (2014), 307-329. | DOI | MR | JFM

[5] Feireisl, E., Klein, R., Novotný, A., Zatorska, E.: On singular limits arising in the scale analysis of stratified fluid flows. Math. Models Methods Appl. Sci. 26 (2016), 419-443. | DOI | MR | JFM

[6] Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012), 683-706. | DOI | MR | JFM

[7] Lin, F.-H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48 (1995), 501-537. | DOI | MR | JFM

[8] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). | DOI | MR | JFM

[9] Zhao, L., Guo, B., Huang, H.: Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system. J. Math. Anal. Appl. 384 (2011), 232-245. | DOI | MR | JFM

Cité par Sources :