Pseudo-Riemannian weakly symmetric manifolds of low dimension
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 811-835
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions $2$ and $3$, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive $3$-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a $3$-dimensional reductive $2$-fold symmetric pseudo-Riemannian manifold must be globally symmetric.
We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions $2$ and $3$, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive $3$-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a $3$-dimensional reductive $2$-fold symmetric pseudo-Riemannian manifold must be globally symmetric.
DOI : 10.21136/CMJ.2019.0515-17
Classification : 22E46, 53C30
Keywords: pseudo-Riemannian manifold; pseudo-Riemannian weakly symmetric manifold; pseudo-Riemannian weakly symmetric Lie algebra; Lorentzian weakly symmetric manifold
@article{10_21136_CMJ_2019_0515_17,
     author = {Zhang, Bo and Chen, Zhiqi and Deng, Shaoqiang},
     title = {Pseudo-Riemannian weakly symmetric manifolds of low dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {811--835},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2019.0515-17},
     mrnumber = {3989280},
     zbl = {07088818},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0515-17/}
}
TY  - JOUR
AU  - Zhang, Bo
AU  - Chen, Zhiqi
AU  - Deng, Shaoqiang
TI  - Pseudo-Riemannian weakly symmetric manifolds of low dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 811
EP  - 835
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0515-17/
DO  - 10.21136/CMJ.2019.0515-17
LA  - en
ID  - 10_21136_CMJ_2019_0515_17
ER  - 
%0 Journal Article
%A Zhang, Bo
%A Chen, Zhiqi
%A Deng, Shaoqiang
%T Pseudo-Riemannian weakly symmetric manifolds of low dimension
%J Czechoslovak Mathematical Journal
%D 2019
%P 811-835
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0515-17/
%R 10.21136/CMJ.2019.0515-17
%G en
%F 10_21136_CMJ_2019_0515_17
Zhang, Bo; Chen, Zhiqi; Deng, Shaoqiang. Pseudo-Riemannian weakly symmetric manifolds of low dimension. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 811-835. doi: 10.21136/CMJ.2019.0515-17

[1] Berndt, J., Vanhecke, L.: Geometry of weakly symmetric spaces. J. Math. Soc. Japan 48 (1996), 745-760. | DOI | MR | JFM

[2] Chen, Z., Wolf, J. A.: Pseudo-Riemannian weakly symmetric manifolds. Ann. Global Anal. Geom. 41 (2012), 381-390. | DOI | MR | JFM

[3] Barco, V. del, Ovando, G. P.: Isometric actions on pseudo-Riemannian nilmanifolds. Ann. Global Anal. Geom. 45 (2014), 95-110. | DOI | MR | JFM

[4] Deng, S.: An algebraic approach to weakly symmetric Finsler spaces. Can. J. Math. 62 (2010), 52-73. | DOI | MR | JFM

[5] Deng, S.: On the symmetry of Riemannian manifolds. J. Reine Angew. Math. 680 (2013), 235-256. | DOI | MR | JFM

[6] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Pure and Applied Mathematics 80, Academic Press, New York (1978). | MR | JFM

[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. I. Interscience Publishers, John Wiley & Sons, New York (1963). | MR | JFM

[8] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc., New Ser. 20 (1956), 47-87. | MR | JFM

[9] Wang, H.-C.: Two-point homogeneous spaces. Ann. Math. 55 (1952), 177-191. | DOI | MR | JFM

[10] Wolf, J. A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs 142, American Mathematical Society, Providence (2007). | DOI | MR | JFM

[11] Yakimova, O. S.: Weakly symmetric Riemannian manifolds with a reductive isometry group. Sb. Math. 195 (2004), 599-614 English. Russian original translation from Mat. Sb. 195 2004 143-160. | DOI | MR | JFM

[12] Ziller, W.: Weakly symmetric spaces. Topics in Geometry. In Memory of Joseph D'Atri Progr. Nonlinear Differ. Equ. Appl. 20, Birkhäuser, Boston Gindikin, S. et al. (1996), 355-368. | DOI | MR | JFM

Cité par Sources :