Keywords: pseudo-Riemannian manifold; pseudo-Riemannian weakly symmetric manifold; pseudo-Riemannian weakly symmetric Lie algebra; Lorentzian weakly symmetric manifold
@article{10_21136_CMJ_2019_0515_17,
author = {Zhang, Bo and Chen, Zhiqi and Deng, Shaoqiang},
title = {Pseudo-Riemannian weakly symmetric manifolds of low dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {811--835},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2019.0515-17},
mrnumber = {3989280},
zbl = {07088818},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0515-17/}
}
TY - JOUR AU - Zhang, Bo AU - Chen, Zhiqi AU - Deng, Shaoqiang TI - Pseudo-Riemannian weakly symmetric manifolds of low dimension JO - Czechoslovak Mathematical Journal PY - 2019 SP - 811 EP - 835 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0515-17/ DO - 10.21136/CMJ.2019.0515-17 LA - en ID - 10_21136_CMJ_2019_0515_17 ER -
%0 Journal Article %A Zhang, Bo %A Chen, Zhiqi %A Deng, Shaoqiang %T Pseudo-Riemannian weakly symmetric manifolds of low dimension %J Czechoslovak Mathematical Journal %D 2019 %P 811-835 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0515-17/ %R 10.21136/CMJ.2019.0515-17 %G en %F 10_21136_CMJ_2019_0515_17
Zhang, Bo; Chen, Zhiqi; Deng, Shaoqiang. Pseudo-Riemannian weakly symmetric manifolds of low dimension. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 811-835. doi: 10.21136/CMJ.2019.0515-17
[1] Berndt, J., Vanhecke, L.: Geometry of weakly symmetric spaces. J. Math. Soc. Japan 48 (1996), 745-760. | DOI | MR | JFM
[2] Chen, Z., Wolf, J. A.: Pseudo-Riemannian weakly symmetric manifolds. Ann. Global Anal. Geom. 41 (2012), 381-390. | DOI | MR | JFM
[3] Barco, V. del, Ovando, G. P.: Isometric actions on pseudo-Riemannian nilmanifolds. Ann. Global Anal. Geom. 45 (2014), 95-110. | DOI | MR | JFM
[4] Deng, S.: An algebraic approach to weakly symmetric Finsler spaces. Can. J. Math. 62 (2010), 52-73. | DOI | MR | JFM
[5] Deng, S.: On the symmetry of Riemannian manifolds. J. Reine Angew. Math. 680 (2013), 235-256. | DOI | MR | JFM
[6] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Pure and Applied Mathematics 80, Academic Press, New York (1978). | MR | JFM
[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. I. Interscience Publishers, John Wiley & Sons, New York (1963). | MR | JFM
[8] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc., New Ser. 20 (1956), 47-87. | MR | JFM
[9] Wang, H.-C.: Two-point homogeneous spaces. Ann. Math. 55 (1952), 177-191. | DOI | MR | JFM
[10] Wolf, J. A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs 142, American Mathematical Society, Providence (2007). | DOI | MR | JFM
[11] Yakimova, O. S.: Weakly symmetric Riemannian manifolds with a reductive isometry group. Sb. Math. 195 (2004), 599-614 English. Russian original translation from Mat. Sb. 195 2004 143-160. | DOI | MR | JFM
[12] Ziller, W.: Weakly symmetric spaces. Topics in Geometry. In Memory of Joseph D'Atri Progr. Nonlinear Differ. Equ. Appl. 20, Birkhäuser, Boston Gindikin, S. et al. (1996), 355-368. | DOI | MR | JFM
Cité par Sources :