Keywords: tilting module; semidualizing module; $C$-projective
@article{10_21136_CMJ_2019_0510_17,
author = {Salimi, Maryam},
title = {Relative tilting modules with respect to a semidualizing module},
journal = {Czechoslovak Mathematical Journal},
pages = {781--800},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2019.0510-17},
mrnumber = {3989278},
zbl = {07088816},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0510-17/}
}
TY - JOUR AU - Salimi, Maryam TI - Relative tilting modules with respect to a semidualizing module JO - Czechoslovak Mathematical Journal PY - 2019 SP - 781 EP - 800 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0510-17/ DO - 10.21136/CMJ.2019.0510-17 LA - en ID - 10_21136_CMJ_2019_0510_17 ER -
%0 Journal Article %A Salimi, Maryam %T Relative tilting modules with respect to a semidualizing module %J Czechoslovak Mathematical Journal %D 2019 %P 781-800 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0510-17/ %R 10.21136/CMJ.2019.0510-17 %G en %F 10_21136_CMJ_2019_0510_17
Salimi, Maryam. Relative tilting modules with respect to a semidualizing module. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 781-800. doi: 10.21136/CMJ.2019.0510-17
[1] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. Lond. Math. Soc. III. 75 (1997), 241-270. | DOI | MR | JFM
[2] Bazzoni, S., Mantese, F., Tonolo, A.: Derived equivalence induced by infinitely generated {$n$}-tilting modules. Proc. Am. Math. Soc. 139 (2011), 4225-4234. | DOI | MR | JFM
[3] Bongratz, K.: Tilted algebras. Representations of Algebras. Proc. 3rd Int. Conf., Puebla, 1980 Lect. Notes Math. 903, Springer, Berlin (1981), 26-38. | DOI | MR | JFM
[4] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | JFM
[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2011). | DOI | MR | JFM
[6] Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1973), 267-284. | DOI | MR | JFM
[7] Golod, E. S.: $G$-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 Russian (1984), 62-66. | MR | JFM
[8] Happel, D., Ringel, C. M.: Tilted algebras. Trans. Am. Math. Soc. 274 (1982), 399-443. | DOI | MR | JFM
[9] Holm, H., Jø{r}gensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR | JFM
[10] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. | DOI | MR | JFM
[11] Miyashita, Y.: Tilting modules of finite projective dimension. Math. Z. 193 (1986), 113-146. | DOI | MR | JFM
[12] Salimi, M.: On relative Gorenstein homological dimensions with respect to a dualizing module. Mat. Vesnik 69 (2017), 118-125. | MR
[13] Salimi, M., Sather-Wagstaff, S., Tavasoli, E., Yassemi, S.: Relative Tor functors with respect to a semidualizing module. Algebr. Represent. Theory 17 (2014), 103-120. | DOI | MR | JFM
[14] Salimi, M., Tavasoli, E., Yassemi, S.: Top local cohomology modules and Gorenstein injectivity with respect to a semidualizing module. Arch. Math. 98 (2012), 299-305. | DOI | MR | JFM
[15] Sather-Wagstaff, S.: Semidualizing Modules. Available at https://ssather.people.clemson.edu/DOCS/sdm.pdf | Zbl
[16] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z. 264 (2010), 571-600. | DOI | MR | JFM
[17] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. | DOI | MR | JFM
[18] Tang, X.: New characterizations of dualizing modules. Commun. Algebra 40 (2012), 845-861. | DOI | MR | JFM
[19] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14, Elsevier, Amsterdam (1974). | DOI | MR | JFM
[20] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra 2 (2010), 111-137. | DOI | MR | JFM
Cité par Sources :