Note on duality of weighted multi-parameter Triebel-Lizorkin spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 763-779 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces $\dot F^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$. This space has been introduced and the result $$(\dot F^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}}))^{\ast }= {\rm CMO}^{-\alpha ,q'}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$$ for $0
We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces $\dot F^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$. This space has been introduced and the result $$(\dot F^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}}))^{\ast }= {\rm CMO}^{-\alpha ,q'}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$$ for $0$ has been proved in Ding, Zhu (2017). In this paper, for $1$, $0$ we establish its dual space $\dot H^{\alpha ,q}_{p}(\omega ;\mathbb {R}^{n_{1}}\times \mathbb {R}^{n_{2}})$.
DOI : 10.21136/CMJ.2019.0509-17
Classification : 42B25, 42B35
Keywords: Triebel-Lizorkin space; duality; weighted multi-parameter
@article{10_21136_CMJ_2019_0509_17,
     author = {Ding, Wei and Chen, Jiao and Niu, Yaoming},
     title = {Note on duality of weighted multi-parameter {Triebel-Lizorkin} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {763--779},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2019.0509-17},
     mrnumber = {3989277},
     zbl = {07088815},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0509-17/}
}
TY  - JOUR
AU  - Ding, Wei
AU  - Chen, Jiao
AU  - Niu, Yaoming
TI  - Note on duality of weighted multi-parameter Triebel-Lizorkin spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 763
EP  - 779
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0509-17/
DO  - 10.21136/CMJ.2019.0509-17
LA  - en
ID  - 10_21136_CMJ_2019_0509_17
ER  - 
%0 Journal Article
%A Ding, Wei
%A Chen, Jiao
%A Niu, Yaoming
%T Note on duality of weighted multi-parameter Triebel-Lizorkin spaces
%J Czechoslovak Mathematical Journal
%D 2019
%P 763-779
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0509-17/
%R 10.21136/CMJ.2019.0509-17
%G en
%F 10_21136_CMJ_2019_0509_17
Ding, Wei; Chen, Jiao; Niu, Yaoming. Note on duality of weighted multi-parameter Triebel-Lizorkin spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 763-779. doi: 10.21136/CMJ.2019.0509-17

[1] Bownik, M.: Duality and interpolation of anisotropic Triebel-Lizorkin spaces. Math. Z. 259 (2008), 131-169. | DOI | MR | JFM

[2] Carleson, L.: A counterexample for measures bounded on $H^p$ for the bidisc. Mittag-Leffler Report. No. 7 (1974). | MR

[3] Chang, S.-Y. A., Fefferman, R.: A continuous version of duality of $H^1$ with BMO on the bidisc. Ann. Math. (2) 112 (1980), 179-201. | DOI | MR | JFM

[4] Chang, S.-Y. A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains. Am. J. Math. 104 (1982), 455-468. | DOI | MR | JFM

[5] Chang, S.-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and $H^p$ theory on product domains. Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. | DOI | MR | JFM

[6] Cruz-Uribe, D., Martell, J. M., Pérez, C.: Sharp weighted estimates for classical operators. Adv. Math. 229 (2012), 408-441. | DOI | MR | JFM

[7] Ding, W., Lu, G.: Duality of multi-parameter Triebel-Lizorkin spaces associated with the composition of two singular integral operators. Trans. Am. Math. Soc. 368 (2016), 7119-7152. | DOI | MR | JFM

[8] Ding, W., Zhu, Y.: Duality of weighted multiparameter Triebel-Lizorkin spaces. Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1083-1104. | DOI | MR | JFM

[9] Fan, X., He, J., Li, B., Yang, D.: Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces. Sci. China, Math. 60 (2017), 2093-2154. | DOI | MR | JFM

[10] Fefferman, R.: Strong differentiation with respect to measures. Am. J. Math. 103 (1981), 33-40. | DOI | MR | JFM

[11] Fefferman, R.: Calderón-Zygmund theory for product domains: $H^p$ spaces. Proc. Natl. Acad. Sci. USA 83 (1986), 840-843. | DOI | MR | JFM

[12] Fefferman, R.: Harmonic analysis on product spaces. Ann. Math. (2) 126 (1987), 109-130. | DOI | MR | JFM

[13] Fefferman, R., Stein, E. M.: Singular integrals on product spaces. Adv. Math. 45 (1982), 117-143. | DOI | MR | JFM

[14] Ferguson, S. H., Lacey, M. T.: A characterization of product BMO by commutators. Acta Math. 189 (2002), 143-160. | DOI | MR | JFM

[15] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34-170. | DOI | MR | JFM

[16] Grafakos, L.: Classical and Modern Fourier Analysis. Pearson/Prentice Hall, Upper Saddle River (2004). | MR | JFM

[17] Gundy, R. F., Stein, E. M.: $H^p$ theory for the polydisk. Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. | DOI | MR | JFM

[18] Han, Y., Lee, M.-Y., Lin, C.-C., Lin, Y.-C.: Calderón-Zygmund operators on product Hardy spaces. J. Funct. Anal. 258 (2010), 2834-2861. | DOI | MR | JFM

[19] Han, Y., Li, J., Lu, G.: Duality of multiparameter Hardy spaces $H^p$ on spaces of homogeneous type. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 645-685. | DOI | MR | JFM

[20] Han, Y., Li, J., Lu, G.: Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type. Trans. Am. Math. Soc. 365 (2013), 319-360. | DOI | MR | JFM

[21] Han, Y., Lu, G., Ruan, Z.: Boundedness criterion of Journé's class of singular integrals on multiparameter Hardy spaces. J. Funct. Anal. 264 (2013), 1238-1268. | DOI | MR | JFM

[22] Han, Y., Lu, G., Ruan, Z.: Boundedness of singular Integrals in Journé's class on weighted multiparameter Hardy spaces. J. Geom. Anal. 24 (2014), 2186-2228. | DOI | MR | JFM

[23] Han, Y., Lin, C., Lu, G., Ruan, Z., Sawyer, E. T.: Hardy spaces associated with different homogeneities and boundedness of composition operators. Rev. Mat. Iberoam. 29 (2013), 1127-1157. | DOI | MR | JFM

[24] Journé, J.-L.: Calderón-Zygmund operators on product spaces. Rev. Mat. Iberoam. 1 (1985), 55-91. | DOI | MR | JFM

[25] Journé, J.-L.: Two problems of Calderón-Zygmund theory on product spaces. Ann. Inst. Fourier 38 (1988), 111-132. | DOI | MR | JFM

[26] Li, B., Bownik, M., Yang, D., Yuan, W.: Duality of weighted anisotropic Besov and Triebel-Lizorkin spaces. Positivity 16 (2012), 213-244. | DOI | MR | JFM

[27] Li, B. D., Fan, X., Fu, Z. W., Yang, D.: Molecular characterization of anisotropic Musielak-Orlicz Hardy spaces and their applications. Acta Math. Sin., Engl. Ser. 32 (2016), 1391-1414. | DOI | MR | JFM

[28] Liu, J., Yang, D., Yuan, W.: Anisotropic Hardy-Lorentz spaces and their applications. Sci. China, Math. 59 (2016), 1669-1720. | DOI | MR | JFM

[29] Liu, J., Yang, D., Yuan, W.: Anisotropic variable Hardy-Lorentz spaces and their real interpolation. J. Math. Anal. Appl. 456 (2017), 356-393. | DOI | MR | JFM

[30] Liu, J., Yang, D., Yuan, W.: Littlewood-Paley characterizations of anisotropic Hardy-Lorentz spaces. Acta Math. Sci., Ser. B, Engl. Ed. 38 (2018), 1-33. | DOI | MR | JFM

[31] Lu, G. Z., Zhu, Y. P.: Singular integrals and weighted Triebel-Lizorkin and Besov Spaces of arbitrary number of parameters. Acta Math. Sin., Engl. Ser. 29 (2013), 39-52. | DOI | MR | JFM

[32] Pipher, J.: Journér's covering lemma and its extension to higher dimensions. Duke Math. J. 53 (1986), 683-690. | DOI | MR | JFM

[33] Pisier, G.: Factorization of operators through $L^{p\infty}$ or $L^{p1}$ and non-commutative generalizations. Math. Ann. 276 (1986), 105-136. | DOI | MR | JFM

[34] Ruan, Z.: Weighted Hardy spaces in three-parameter case. J. Math. Anal. Appl. 367 (2010), 625-639. | DOI | MR | JFM

[35] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78, Birkhäuser, Basel (1983). | DOI | MR | JFM

[36] Verbitsky, I. E.: Imbedding and multiplier theorems for discrete Littlewood-Paley spaces. Pac. J. Math. 176 (1996), 529-556. | DOI | MR | JFM

[37] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005, Springer, Berlin (2010). | DOI | MR | JFM

Cité par Sources :