Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 713-761
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {R}$ be a commutative ring, $\mathcal {G}$ be a generalized matrix algebra over $\mathcal {R}$ with weakly loyal bimodule and $\mathcal {Z}(\mathcal {G})$ be the center of $\mathcal {G}$. Suppose that $\mathfrak {q}\colon \mathcal {G}\times \mathcal {G} \rightarrow \mathcal {G}$ is an \hbox {$\mathcal {R}$-bilinear} mapping and that $\mathfrak {T}_{\mathfrak {q}}\colon \mathcal {G}\rightarrow \mathcal {G}$ is a trace of $\mathfrak {q}$. The aim of this article is to describe the form of $\mathfrak {T}_{\mathfrak {q}}$ satisfying the centralizing condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]\in \mathcal {Z(G)}$ (and commuting condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]=0$) for all $x\in \mathcal {G}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak {T}_{\mathfrak {q}}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal {G}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.
Let $\mathcal {R}$ be a commutative ring, $\mathcal {G}$ be a generalized matrix algebra over $\mathcal {R}$ with weakly loyal bimodule and $\mathcal {Z}(\mathcal {G})$ be the center of $\mathcal {G}$. Suppose that $\mathfrak {q}\colon \mathcal {G}\times \mathcal {G} \rightarrow \mathcal {G}$ is an \hbox {$\mathcal {R}$-bilinear} mapping and that $\mathfrak {T}_{\mathfrak {q}}\colon \mathcal {G}\rightarrow \mathcal {G}$ is a trace of $\mathfrak {q}$. The aim of this article is to describe the form of $\mathfrak {T}_{\mathfrak {q}}$ satisfying the centralizing condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]\in \mathcal {Z(G)}$ (and commuting condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]=0$) for all $x\in \mathcal {G}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak {T}_{\mathfrak {q}}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal {G}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.
DOI : 10.21136/CMJ.2019.0507-17
Classification : 15A78, 16R60, 16W10
Keywords: generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism
@article{10_21136_CMJ_2019_0507_17,
     author = {Liang, Xinfeng and Wei, Feng and Fo\v{s}ner, Ajda},
     title = {Centralizing traces and {Lie-type} isomorphisms on generalized matrix algebras: a new perspective},
     journal = {Czechoslovak Mathematical Journal},
     pages = {713--761},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2019.0507-17},
     mrnumber = {3989276},
     zbl = {07088814},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/}
}
TY  - JOUR
AU  - Liang, Xinfeng
AU  - Wei, Feng
AU  - Fošner, Ajda
TI  - Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 713
EP  - 761
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/
DO  - 10.21136/CMJ.2019.0507-17
LA  - en
ID  - 10_21136_CMJ_2019_0507_17
ER  - 
%0 Journal Article
%A Liang, Xinfeng
%A Wei, Feng
%A Fošner, Ajda
%T Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
%J Czechoslovak Mathematical Journal
%D 2019
%P 713-761
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/
%R 10.21136/CMJ.2019.0507-17
%G en
%F 10_21136_CMJ_2019_0507_17
Liang, Xinfeng; Wei, Feng; Fošner, Ajda. Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 713-761. doi: 10.21136/CMJ.2019.0507-17

[1] Ánh, P. N., Wyk, L. van: Automorphism groups of generalized triangular matrix rings. Linear Algebra Appl. 434 (2011), 1018-1026. | DOI | MR | JFM

[2] Bai, Z., Du, S., Hou, J.: Multiplicative Lie isomorphisms between prime rings. Commun. Algebra 36 (2008), 1626-1633. | DOI | MR | JFM

[3] Benkovič, D.: Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra 63 (2015), 141-165. | DOI | MR | JFM

[4] Benkovič, D., Eremita, D.: Commuting traces and commutativity preserving maps on triangular algebras. J. Algebra 280 (2004), 797-824. | DOI | MR | JFM

[5] Benkovič, D., Eremita, D.: Multiplicative Lie {$n$}-derivations of triangular rings. Linear Algebra Appl. 436 (2012), 4223-4240. | DOI | MR | JFM

[6] Benkovič, D., Širovnik, N.: Jordan derivations of unital algebras with idempotents. Linear Algebra Appl. 437 (2012), 2271-2284. | DOI | MR | JFM

[7] Boboc, C., Dăscălescu, S., Wyk, L. van: Isomorphisms between Morita context rings. Linear Multilinear Algebra 60 (2012), 545-563. | DOI | MR | JFM

[8] Brešar, M.: Centralizing mappings and derivations in prime rings. J. Algebra 156 (1993), 385-394. | DOI | MR | JFM

[9] Brešar, M.: Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings. Trans. Am. Math. Soc. 335 (1993), 525-546. | DOI | MR | JFM

[10] Brešar, M.: Commuting maps: a survey. Taiwanese J. Math. 8 (2004), 361-397. | DOI | MR | JFM

[11] Brešar, M., Chebotar, M. A., III, W. S. Martindale: Functional Identities. Frontiers in Mathematics, Birkhäuser, Basel (2007). | DOI | MR | JFM

[12] Martín, A. J. Calderón: Graded triangular algebras. Electron. J. Linear Algebra 27 (2014), 317-331. | DOI | MR | JFM

[13] Martín, A. J. Calderón, Haralampidou, M.: Lie mappings on locally $m$-convex $H^*$-algebras. Proceedings of the International Conference on Topological Algebras and Their Applications, ICTAA 2008 Math. Stud. (Tartu) 4, Estonian Mathematical Society, Tartu (2008), 42-51. | MR | JFM

[14] Martín, A. J. Calderón, González, C. Martín: Lie isomorphisms on {$H^*$}-algebras. Commun. Algebra 31 (2003), 323-333. | DOI | MR | JFM

[15] Martín, A. J. Calderón, González, C. Martín: The Banach-Lie group of Lie triple automorphisms of an $H^*$-algebra. Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 1219-1226. | DOI | MR | JFM

[16] Martín, A. J. Calderón, González, C. Martín: A linear approach to Lie triple automorphisms of $H^*$-algebras. J. Korean Math. Soc. 48 (2011), 117-132. | DOI | MR | JFM

[17] Cheung, W.-S.: Mappings on Triangular Algebras. Doctoral dissertation, University of Victoria, Canada (2000). | MR

[18] Cheung, W.-S.: Commuting maps of triangular algebras. J. Lond. Math. Soc., II. Ser. 63 (2001), 117-127. | DOI | MR | JFM

[19] Ding, Y.-N., Li, J.-K.: Characterizations of Lie $n$-derivations of unital algebras with nontrivial idempotents. Available at | arXiv | MR

[20] Dolinar, G.: Maps on {$M_n$} preserving Lie products. Publ. Math. 71 (2007), 467-477. | MR | JFM

[21] Dolinar, G.: Maps on upper triangular matrices preserving Lie products. Linear Multilinear Algebra 55 (2007), 191-198. | DOI | MR | JFM

[22] Du, Y., Wang, Y.: {$k$}-commuting maps on triangular algebras. Linear Algebra Appl. 436 (2012), 1367-1375. | DOI | MR | JFM

[23] Du, Y., Wang, Y.: Lie derivations of generalized matrix algebras. Linear Algebra Appl. 436 (2012), 1367-1375. | DOI | MR | JFM

[24] Du, Y., Wang, Y.: Biderivations of generalized matrix algebras. Linear Algebra Appl. 438 (2013), 4483-4499. | DOI | MR | JFM

[25] Franca, W.: Commuting maps on some subsets of matrices that are not closed under addition. Linear Algebra Appl. 437 (2012), 388-391. | DOI | MR | JFM

[26] Franca, W.: Commuting maps on rank-{$k$} matrices. Linear Algebra Appl. 438 (2013), 2813-2815. | DOI | MR | JFM

[27] Franca, W.: Commuting traces of multiadditive maps on invertible and singular matrices. Linear Multilinear Algebra 61 (2013), 1528-1535. | DOI | MR | JFM

[28] Franca, W.: Commuting traces on invertible and singular operators. Oper. Matrices 9 (2015), 305-310. | DOI | MR | JFM

[29] Franca, W.: Commuting traces of biadditive maps on invertible elements. Commun. Algebra 44 (2016), 2621-2634. | DOI | MR | JFM

[30] Franca, W.: Weakly commuting maps on the set of rank-1 matrices. Linear Multilinear Algebra 65 (2017), 475-495. | DOI | MR | JFM

[31] Franca, W., Louza, N.: Commuting maps on rank-1 matrices over noncommutative division rings. Commun. Algebra 45 (2017), 4696-4706. | DOI | MR | JFM

[32] Herstein, I. N.: Lie and Jordan structures in simple, associative rings. Bull. Am. Math. Soc. 67 (1961), 517-531. | DOI | MR | JFM

[33] Hua, L.-K.: A theorem on matrices over a sfield and its applications. J. Chinese Math. Soc. (N.S.) 1 (1951), 110-163. | MR

[34] Krylov, P. A.: Isomorphism of generalized matrix rings. Algebra Logika 47 (2008), 456-463 Russian translation in Algebra Logic 47 2008 258-262. | DOI | MR | JFM

[35] Krylov, P. A.: Injective modules over formal matrix rings. Sibirsk. Mat. Zh. 51 (2010), 90-97 Russian translation in Sib. Math. J. 51 2010 72-77. | DOI | MR | JFM

[36] Krylov, P. A.: The group {$K_0$} of a generalized matrix ring. Algebra Logika 52 (2013), 370-385 Russian translation in Algebra Logic 52 2013 250-261. | DOI | MR | JFM

[37] Krylov, P. A., Tuganbaev, A. A.: Modules over formal matrix rings. Fundam. Prikl. Mat. 15 (2009), 145-211 Russian translation in J. Math. Sci., New York 171, 2010 248-295. | DOI | MR | JFM

[38] Krylov, P., Tuganbaev, A.: Formal Matrices. Algebra and Applications 23 Springer, Cham (2017). | DOI | MR | JFM

[39] Lee, P.-H., Wong, T.-L., Lin, J.-S., Wang, R.-J.: Commuting traces of multiadditive mappings. J. Algebra 193 (1997), 709-723. | DOI | MR | JFM

[40] Li, Y., Wyk, L. van, Wei, F.: Jordan derivations and antiderivations of generalized matrix algebras. Oper. Matrices 7 (2013), 399-415. | DOI | MR | JFM

[41] Li, Y., Wei, F.: Semi-centralizing maps of generalized matrix algebras. Linear Algebra Appl. 436 (2012), 1122-1153. | DOI | MR | JFM

[42] Li, Y., Wei, F., Fošner, A.: $k$-Commuting mappings of generalized matrix algebras. (to appear) in Period. Math. Hungar. | DOI

[43] Liang, X., Wei, F., Xiao, Z., Fošner, A.: Centralizing traces and Lie triple isomorphisms on generalized matrix algebras. Linear Multilinear Algebra 63 (2015), 1786-1816. | DOI | MR | JFM

[44] Liu, C.-K.: Centralizing maps on invertible or singular matrices over division rings. Linear Algebra Appl. 440 (2014), 318-324. | DOI | MR | JFM

[45] Liu, C.-K., Yang, J.-J.: Power commuting additive maps on invertible or singular matrices. Linear Algebra Appl. 530 (2017), 127-149. | DOI | MR | JFM

[46] Lu, F.: Lie isomorphisms of reflexive algebras. J. Funct. Anal. 240 (2006), 84-104. | DOI | MR | JFM

[47] Marcoux, L. W., Sourour, A. R.: Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras. Linear Algebra Appl. 288 (1999), 89-104. | DOI | MR | JFM

[48] Marcoux, L. W., Sourour, A. R.: Lie isomorphisms of nest algebras. J. Funct. Anal. 164 (1999), 163-180. | DOI | MR | JFM

[49] González, C. Martín, Repka, J., Sánchez-Ortega, J.: Automorphisms, {$\sigma$}-biderivations and {$\sigma$}-commuting maps of triangular algebras. Mediterr. J. Math. 14 (2017), Article No. 68, 25 pages. | DOI | MR | JFM

[50] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. | MR | JFM

[51] Qi, X., Hou, J.: Characterization of {$\xi$}-Lie multiplicative isomorphisms. Oper. Matrices 4 (2010), 417-429. | DOI | MR | JFM

[52] Qi, X., Hou, J.: Characterization of {$k$}-commuting additive maps on rings. Linear Algebra Appl. 468 (2015), 48-62. | DOI | MR | JFM

[53] Qi, X., Hou, J., Deng, J.: Lie ring isomorphisms between nest algebras on Banach spaces. J. Funct. Anal. 266 (2014), 4266-4292. | DOI | MR | JFM

[54] Sánchez-Ortega, J.: $\sigma$-mappings of triangular algebras. Available at | arXiv

[55] Sourour, A. R.: Maps on triangular matrix algebras. Problems in Applied Mathematics and Computational Intelligence Math. Comput. Sci. Eng., World Sci. Eng. Soc. Press, Athens (2001), 92-96. | MR

[56] Šemrl, P.: Non-linear commutativity preserving maps. Acta Sci. Math. 71 (2005), 781-819. | MR | JFM

[57] Wang, T., Lu, F.: Lie isomorphisms of nest algebras on Banach spaces. J. Math. Anal. Appl. 391 (2012), 582-594. | DOI | MR | JFM

[58] Wang, Y.: Commuting (centralizing) traces and Lie (triple) isomorphisms on triangular algebras revisited. Linear Algebra Appl. 488 (2016), 45-70. | DOI | MR | JFM

[59] Wang, Y.: Notes on centralizing traces and Lie triple isomorphisms on triangular algebras. Linear Multilinear Algebra 64 (2016), 863-869. | DOI | MR | JFM

[60] Wang, Y., Wang, Y.: Multiplicative Lie {$n$}-derivations of generalized matrix algebras. Linear Algebra Appl. 438 (2013), 2599-2616. | DOI | MR | JFM

[61] Xiao, Z., Wei, F.: Commuting mappings of generalized matrix algebras. Linear Algebra Appl. 433 (2010), 2178-2197. | DOI | MR | JFM

[62] Xiao, Z., Wei, F.: Commuting traces and Lie isomorphisms on generalized matrix algebras. Oper. Matrices 8 (2014), 821-847. | DOI | MR | JFM

[63] Xiao, Z., Wei, F., Fošner, A.: Centralizing traces and Lie triple isomorphisms on triangular algebras. Linear Multilinear Algebra 63 (2015), 1309-1331. | DOI | MR | JFM

[64] Xu, X., Yi, X.: Commuting maps on rank-{$k$} matrices. Electron. J. Linear Algebra 27 (2014), 735-741. | DOI | MR | JFM

[65] Yu, X., Lu, F.: Maps preserving Lie product on {$B(X)$}. Taiwanese J. Math. 12 (2008), 793-806. | DOI | MR | JFM

[66] Zhang, J.-H., Zhang, F.-J.: Nonlinear maps preserving Lie products on factor von Neumann algebras. Linear Algebra Appl. 429 (2008), 18-30. | DOI | MR | JFM

Cité par Sources :