Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 713-761
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathcal {R}$ be a commutative ring, $\mathcal {G}$ be a generalized matrix algebra over $\mathcal {R}$ with weakly loyal bimodule and $\mathcal {Z}(\mathcal {G})$ be the center of $\mathcal {G}$. Suppose that $\mathfrak {q}\colon \mathcal {G}\times \mathcal {G} \rightarrow \mathcal {G}$ is an \hbox {$\mathcal {R}$-bilinear} mapping and that $\mathfrak {T}_{\mathfrak {q}}\colon \mathcal {G}\rightarrow \mathcal {G}$ is a trace of $\mathfrak {q}$. The aim of this article is to describe the form of $\mathfrak {T}_{\mathfrak {q}}$ satisfying the centralizing condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]\in \mathcal {Z(G)}$ (and commuting condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]=0$) for all $x\in \mathcal {G}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak {T}_{\mathfrak {q}}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal {G}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.
DOI :
10.21136/CMJ.2019.0507-17
Classification :
15A78, 16R60, 16W10
Keywords: generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism
Keywords: generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism
@article{10_21136_CMJ_2019_0507_17,
author = {Liang, Xinfeng and Wei, Feng and Fo\v{s}ner, Ajda},
title = {Centralizing traces and {Lie-type} isomorphisms on generalized matrix algebras: a new perspective},
journal = {Czechoslovak Mathematical Journal},
pages = {713--761},
publisher = {mathdoc},
volume = {69},
number = {3},
year = {2019},
doi = {10.21136/CMJ.2019.0507-17},
mrnumber = {3989276},
zbl = {07088814},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/}
}
TY - JOUR AU - Liang, Xinfeng AU - Wei, Feng AU - Fošner, Ajda TI - Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective JO - Czechoslovak Mathematical Journal PY - 2019 SP - 713 EP - 761 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/ DO - 10.21136/CMJ.2019.0507-17 LA - en ID - 10_21136_CMJ_2019_0507_17 ER -
%0 Journal Article %A Liang, Xinfeng %A Wei, Feng %A Fošner, Ajda %T Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective %J Czechoslovak Mathematical Journal %D 2019 %P 713-761 %V 69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/ %R 10.21136/CMJ.2019.0507-17 %G en %F 10_21136_CMJ_2019_0507_17
Liang, Xinfeng; Wei, Feng; Fošner, Ajda. Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 713-761. doi: 10.21136/CMJ.2019.0507-17
Cité par Sources :