Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 713-761.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal {R}$ be a commutative ring, $\mathcal {G}$ be a generalized matrix algebra over $\mathcal {R}$ with weakly loyal bimodule and $\mathcal {Z}(\mathcal {G})$ be the center of $\mathcal {G}$. Suppose that $\mathfrak {q}\colon \mathcal {G}\times \mathcal {G} \rightarrow \mathcal {G}$ is an \hbox {$\mathcal {R}$-bilinear} mapping and that $\mathfrak {T}_{\mathfrak {q}}\colon \mathcal {G}\rightarrow \mathcal {G}$ is a trace of $\mathfrak {q}$. The aim of this article is to describe the form of $\mathfrak {T}_{\mathfrak {q}}$ satisfying the centralizing condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]\in \mathcal {Z(G)}$ (and commuting condition $[\mathfrak {T}_{\mathfrak {q}}(x), x]=0$) for all $x\in \mathcal {G}$. More precisely, we will revisit the question of when the centralizing trace (and commuting trace) $\mathfrak {T}_{\mathfrak {q}}$ has the so-called proper form from a new perspective. Using the aforementioned trace function, we establish sufficient conditions for each Lie-type isomorphism of $\mathcal {G}$ to be almost standard. As applications, centralizing (commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras and those on upper triangular matrix algebras are totally determined.
DOI : 10.21136/CMJ.2019.0507-17
Classification : 15A78, 16R60, 16W10
Keywords: generalized matrix algebra; commuting trace; centralizing trace; Lie isomorphism; Lie triple isomorphism
@article{10_21136_CMJ_2019_0507_17,
     author = {Liang, Xinfeng and Wei, Feng and Fo\v{s}ner, Ajda},
     title = {Centralizing traces and {Lie-type} isomorphisms on generalized matrix algebras: a new perspective},
     journal = {Czechoslovak Mathematical Journal},
     pages = {713--761},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.21136/CMJ.2019.0507-17},
     mrnumber = {3989276},
     zbl = {07088814},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/}
}
TY  - JOUR
AU  - Liang, Xinfeng
AU  - Wei, Feng
AU  - Fošner, Ajda
TI  - Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 713
EP  - 761
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/
DO  - 10.21136/CMJ.2019.0507-17
LA  - en
ID  - 10_21136_CMJ_2019_0507_17
ER  - 
%0 Journal Article
%A Liang, Xinfeng
%A Wei, Feng
%A Fošner, Ajda
%T Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective
%J Czechoslovak Mathematical Journal
%D 2019
%P 713-761
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/
%R 10.21136/CMJ.2019.0507-17
%G en
%F 10_21136_CMJ_2019_0507_17
Liang, Xinfeng; Wei, Feng; Fošner, Ajda. Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 713-761. doi : 10.21136/CMJ.2019.0507-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0507-17/

Cité par Sources :