Keywords: integral inequality; bipartite graph; graph homomorphism; Sidorenko's conjecture
@article{10_21136_CMJ_2019_0453_17,
author = {Kaskosz, Barbara and Thoma, Lubos},
title = {Lower bounds for integral functionals generated by bipartite graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {571--592},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2019.0453-17},
mrnumber = {3959965},
zbl = {07088805},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0453-17/}
}
TY - JOUR AU - Kaskosz, Barbara AU - Thoma, Lubos TI - Lower bounds for integral functionals generated by bipartite graphs JO - Czechoslovak Mathematical Journal PY - 2019 SP - 571 EP - 592 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0453-17/ DO - 10.21136/CMJ.2019.0453-17 LA - en ID - 10_21136_CMJ_2019_0453_17 ER -
%0 Journal Article %A Kaskosz, Barbara %A Thoma, Lubos %T Lower bounds for integral functionals generated by bipartite graphs %J Czechoslovak Mathematical Journal %D 2019 %P 571-592 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0453-17/ %R 10.21136/CMJ.2019.0453-17 %G en %F 10_21136_CMJ_2019_0453_17
Kaskosz, Barbara; Thoma, Lubos. Lower bounds for integral functionals generated by bipartite graphs. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 571-592. doi: 10.21136/CMJ.2019.0453-17
[1] Bernardi, O.: Solution to a combinatorial puzzle arising from Mayer's theory of cluster integrals. Sémin. Lothar. Comb. 59 (2007), Article No. B59e, 10 pages. | MR | JFM
[2] Bogachev, V. I.: Measure Theory. Vol. I, II. Springer, Berlin (2007). | DOI | MR | JFM
[3] Conlon, D., Fox, J., Sudakov, B.: An approximate version of Sidorenko's conjecture. Geom. Funct. Anal. 20 (2010), 1354-1366. | DOI | MR | JFM
[4] Conlon, D., Kim, J. H., Lee, C., Lee, J.: Some advances on Sidorenko's conjecture. J. London Math. Soc. 98 (2018), 593-608. | DOI | MR | JFM
[5] Conlon, D., Lee, J.: Finite reflection groups and graph norms. Adv. Math. 315 (2017), 130-165. | DOI | MR | JFM
[6] Hatami, H.: Graph norms and Sidorenko's conjecture. Isr. J. Math. 175 (2010), 125-150. | DOI | MR | JFM
[7] Kaouche, A., Labelle, G.: Mayer and Ree-Hoover weights, graph invariants and bipartite complete graphs. P.U.M.A., Pure Math. Appl. 24 (2013), 19-29. | MR | JFM
[8] Kim, J. H., Lee, C., Lee, J.: Two approaches to Sidorenko's conjecture. Trans. Am. Math. Soc. 368 (2016), 5057-5074. | DOI | MR | JFM
[9] Král', D., Martins, T. L., Pach, P. P., Wrochna, M.: The step Sidorenko property and non-norming edge-transitive graphs. Available at | arXiv | MR
[10] Labelle, G., Leroux, P., Ducharme, M. G.: Graph weights arising from Mayer's theory of cluster integrals. Sémin. Lothar. Comb. 54 (2005), Article No. B54m, 40 pages. | MR | JFM
[11] Li, J. L., Szegedy, B.: On the logarithmic calculus and Sidorenko's conjecture. Available at | arXiv
[12] Lovász, L.: Large Networks and Graph Limits. Colloquium Publications 60. American Mathematical Society, Providence (2012). | DOI | MR | JFM
[13] Mayer, J. E., Mayer, M. Göppert: Statistical Mechanics. J. Wiley and Sons, New York (1940),\99999JFM99999 66.1175.01. | MR
[14] Royden, H. L.: Real Analysis. Macmillan Publishing, New York (1988). | MR | JFM
[15] Sidorenko, A. F.: Inequalities for functionals generated by bipartite graphs. Discrete Math. Appl. 2 (1991), Article No. 489-504 English. Russian original translation from Diskretn. Mat. 3 1991 50-65. | DOI | MR | JFM
[16] Sidorenko, A.: A correlation inequality for bipartite graphs. Graphs Comb. 9 (1993), 201-204. | DOI | MR | JFM
[17] Szegedy, B.: An information theoretic approach to Sidorenko's conjecture. Available at | arXiv
Cité par Sources :