Keywords: ill-posed problem; nonlinear parabolic equation; regularization; parameter choice; semigroup; contraction principle
@article{10_21136_CMJ_2019_0435_17,
author = {Jana, Ajoy and Nair, M. Thamban},
title = {Truncated spectral regularization for an ill-posed non-linear parabolic problem},
journal = {Czechoslovak Mathematical Journal},
pages = {545--569},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2019.0435-17},
mrnumber = {3959964},
zbl = {07088804},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0435-17/}
}
TY - JOUR AU - Jana, Ajoy AU - Nair, M. Thamban TI - Truncated spectral regularization for an ill-posed non-linear parabolic problem JO - Czechoslovak Mathematical Journal PY - 2019 SP - 545 EP - 569 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0435-17/ DO - 10.21136/CMJ.2019.0435-17 LA - en ID - 10_21136_CMJ_2019_0435_17 ER -
%0 Journal Article %A Jana, Ajoy %A Nair, M. Thamban %T Truncated spectral regularization for an ill-posed non-linear parabolic problem %J Czechoslovak Mathematical Journal %D 2019 %P 545-569 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0435-17/ %R 10.21136/CMJ.2019.0435-17 %G en %F 10_21136_CMJ_2019_0435_17
Jana, Ajoy; Nair, M. Thamban. Truncated spectral regularization for an ill-posed non-linear parabolic problem. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 545-569. doi: 10.21136/CMJ.2019.0435-17
[1] Boussetila, N., Rebbani, F.: A modified quasi-reversibility method for a class of ill-posed Cauchy problems. Georgian Math. J. 14 (2007), 627-642. | DOI | MR | JFM
[2] Clark, G. W., Oppenheimer, S. F.: Quasireversibility methods for non-well-posed problems. Electron. J. Differ. Equ. 1994 (1994), 9 pages. | MR | JFM
[3] Denche, M., Bessila, K.: A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301 (2005), 419-426. | DOI | MR | JFM
[4] Denche, M., Djezzar, S.: A modified quasi-boundary value method for a class of abstract parabolic ill-posed problems. Bound. Value Probl. 2006 (2006), Article ID 37524, 8 pages. | DOI | MR | JFM
[5] Fury, M. A.: Modified quasi-reversibility method for nonautonomous semilinear problems. Electron. J. Diff. Eqns., Conf. 20 (2013), 65-78. | MR | JFM
[6] Goldstein, J. A.: Semigroups of Linear Operators and Applications. Oxford Mathematical Monographs, Oxford University Press, Oxford (1985). | MR | JFM
[7] Jana, A., Nair, M. T.: Quasi-reversibility method for an ill-posed nonhomogeneous parabolic problem. Numer. Funct. Anal. Optim. 37 (2016), 1529-1550. | DOI | MR | JFM
[8] Jana, A., Nair, M. T.: Truncated spectral regularization for an ill-posed nonhomogeneous parabolic problem. J. Math. Anal. Appl. 438 (2016), 351-372. | DOI | MR | JFM
[9] Jana, A., Nair, M. T.: A truncated spectral regularization method for a source identification problem. (to appear) in J. Anal. | DOI
[10] Lattès, R., Lions, J.-L.: Méthode de quasi-réversibilité et applications. Travaux et Recherches Mathématiques 15, Dunod, Paris French (1967). | MR | JFM
[11] Miller, K.: Stabilized quasi-reversibility and other nearly-best-possible methods for non-well posed problems. Lect. Notes Math. 316, Springer, Berlin (1973), 161-176. | DOI | MR | JFM
[12] Nam, P. T.: An approximate solution for nonlinear backward parabolic equations. J. Math. Anal. Appl. 367 (2010), 337-349. | DOI | MR | JFM
[13] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer, New York (1983). | DOI | MR | JFM
[14] Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics 7, Springer, New York (2001). | DOI | MR | JFM
[15] Showalter, R. E.: The final value problem for evolution equations. J. Math. Anal. Appl. 47 (1974), 563-572. | DOI | MR | JFM
[16] Tuan, N. H.: Regularization for a class of backward parabolic problems. Bull. Math. Anal. Appl. 2 (2010), 18-26. | MR | JFM
[17] Tuan, N. H., Trong, D. D.: A simple regularization method for the ill-posed evolution equation. Czech. Math. J. 61 (2011), 85-95. | DOI | MR | JFM
[18] Tuan, N. H., Trong, D. D., Quan, P. H.: On a backward Cauchy problem associated with continuous spectrum operator. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1966-1972. | DOI | MR | JFM
[19] Yosida, K.: Functional Analysis. Grundlehren der Mathematischen Wissenschaften 123, Springer, Berlin (1980). | DOI | MR | JFM
Cité par Sources :