Generalized Hölder type spaces of harmonic functions in the unit ball and half space
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 675-691
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study spaces of Hölder type functions harmonic in the unit ball and half space with some smoothness conditions up to the boundary. The first type is the Hölder type space of harmonic functions with prescribed modulus of continuity $\omega =\omega (h)$ and the second is the variable exponent harmonic Hölder space with the continuity modulus $|h|^{\lambda (\cdot )}$. We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary.
We study spaces of Hölder type functions harmonic in the unit ball and half space with some smoothness conditions up to the boundary. The first type is the Hölder type space of harmonic functions with prescribed modulus of continuity $\omega =\omega (h)$ and the second is the variable exponent harmonic Hölder space with the continuity modulus $|h|^{\lambda (\cdot )}$. We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary.
DOI : 10.21136/CMJ.2019.0431-18
Classification : 42B35, 46E15, 46E30
Keywords: Hölder space; harmonic function; variable exponent space; modulus of continuity
@article{10_21136_CMJ_2019_0431_18,
     author = {Karapetyants, Alexey and Restrepo, Joel Esteban},
     title = {Generalized {H\"older} type spaces of harmonic functions in the unit ball and half space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {675--691},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2019.0431-18},
     mrnumber = {4151698},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0431-18/}
}
TY  - JOUR
AU  - Karapetyants, Alexey
AU  - Restrepo, Joel Esteban
TI  - Generalized Hölder type spaces of harmonic functions in the unit ball and half space
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 675
EP  - 691
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0431-18/
DO  - 10.21136/CMJ.2019.0431-18
LA  - en
ID  - 10_21136_CMJ_2019_0431_18
ER  - 
%0 Journal Article
%A Karapetyants, Alexey
%A Restrepo, Joel Esteban
%T Generalized Hölder type spaces of harmonic functions in the unit ball and half space
%J Czechoslovak Mathematical Journal
%D 2020
%P 675-691
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0431-18/
%R 10.21136/CMJ.2019.0431-18
%G en
%F 10_21136_CMJ_2019_0431_18
Karapetyants, Alexey; Restrepo, Joel Esteban. Generalized Hölder type spaces of harmonic functions in the unit ball and half space. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 675-691. doi: 10.21136/CMJ.2019.0431-18

[1] Arsenović, M., Kojić, V., Mateljević, M.: On Lipschitz continuity of harmonic quasiregular maps on the unit ball in $\mathbb R^n$. Ann. Acad. Sci. Fenn., Math. 33 (2008), 315-318. | MR | JFM

[2] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137, Springer, New York (2001). | DOI | MR | JFM

[3] Blumenson, L. E.: A derivation of $n$-dimensional spherical coordinates. Am. Math. Mon. 67 (1960), 63-66. | DOI | MR

[4] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. | DOI | MR | JFM

[5] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13 (2016), 3525-3536. | DOI | MR | JFM

[6] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg (2013). | DOI | MR | JFM

[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). | DOI | MR | JFM

[8] Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs 100, American Mathematical Society, Providence (2004). | DOI | MR | JFM

[9] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics 199, Springer, New York (2000). | DOI | MR | JFM

[10] Karapetyants, A., Rafeiro, H., Samko, S.: Boundedness of the Bergman projection and some properties of Bergman type spaces. Complex Anal. Oper. Theory 13 (2019), 275-289. | DOI | MR | JFM

[11] Karapetyants, A., Samko, S.: Spaces $ BMO_{p(\cdot)}(\Bbb D)$ of a variable exponent $p(z)$. Georgian Math. J. 17 (2010), 529-542. | DOI | MR | JFM

[12] Karapetyants, A., Samko, S.: Mixed norm Bergman-Morrey-type spaces on the unit disc. Math. Notes 100 (2016), 38-48. | DOI | MR | JFM

[13] Karapetyants, A., Samko, S.: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61 (2016), 1090-1106. | DOI | MR | JFM

[14] Karapetyants, A., Samko, S.: Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces. Fract. Calc. Appl. Anal. 20 (2017), 1106-1130. | DOI | MR | JFM

[15] Karapetyants, A., Samko, S.: On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half-plane and harmonic functions in half-space. J. Math. Sci., New York 226 (2017), 344-354. | DOI | MR | JFM

[16] Karapetyants, A., Samko, S.: Generalized Hölder spaces of holomorphic functions in domains in the complex plane. Mediterr. J. Math. 15 (2018), Paper No. 226, 17 pages. | DOI | MR | JFM

[17] Karapetyants, A., Samko, S.: On mixed norm Bergman-Orlicz-Morrey spaces. Georgian Math. J. 25 (2018), 271-282. | DOI | MR | JFM

[18] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1. Variable Exponent Lebesgue and Amalgam Spaces. Operator Theory: Advances and Applications 248, Birkhäuser/Springer, Basel (2016). | DOI | MR | JFM

[19] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2. Variable Exponent Hölder, Morrey-Campanato and Grand Spaces. Operator Theory: Advances and Applications 249, Birkhäuser/Springer, Basel (2016). | DOI | MR | JFM

[20] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM

[21] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). | DOI | MR | JFM

Cité par Sources :