Keywords: Hölder space; harmonic function; variable exponent space; modulus of continuity
@article{10_21136_CMJ_2019_0431_18,
author = {Karapetyants, Alexey and Restrepo, Joel Esteban},
title = {Generalized {H\"older} type spaces of harmonic functions in the unit ball and half space},
journal = {Czechoslovak Mathematical Journal},
pages = {675--691},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2019.0431-18},
mrnumber = {4151698},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0431-18/}
}
TY - JOUR AU - Karapetyants, Alexey AU - Restrepo, Joel Esteban TI - Generalized Hölder type spaces of harmonic functions in the unit ball and half space JO - Czechoslovak Mathematical Journal PY - 2020 SP - 675 EP - 691 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0431-18/ DO - 10.21136/CMJ.2019.0431-18 LA - en ID - 10_21136_CMJ_2019_0431_18 ER -
%0 Journal Article %A Karapetyants, Alexey %A Restrepo, Joel Esteban %T Generalized Hölder type spaces of harmonic functions in the unit ball and half space %J Czechoslovak Mathematical Journal %D 2020 %P 675-691 %V 70 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0431-18/ %R 10.21136/CMJ.2019.0431-18 %G en %F 10_21136_CMJ_2019_0431_18
Karapetyants, Alexey; Restrepo, Joel Esteban. Generalized Hölder type spaces of harmonic functions in the unit ball and half space. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 675-691. doi: 10.21136/CMJ.2019.0431-18
[1] Arsenović, M., Kojić, V., Mateljević, M.: On Lipschitz continuity of harmonic quasiregular maps on the unit ball in $\mathbb R^n$. Ann. Acad. Sci. Fenn., Math. 33 (2008), 315-318. | MR | JFM
[2] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137, Springer, New York (2001). | DOI | MR | JFM
[3] Blumenson, L. E.: A derivation of $n$-dimensional spherical coordinates. Am. Math. Mon. 67 (1960), 63-66. | DOI | MR
[4] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. | DOI | MR | JFM
[5] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces. Mediterr. J. Math. 13 (2016), 3525-3536. | DOI | MR | JFM
[6] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg (2013). | DOI | MR | JFM
[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). | DOI | MR | JFM
[8] Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs 100, American Mathematical Society, Providence (2004). | DOI | MR | JFM
[9] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics 199, Springer, New York (2000). | DOI | MR | JFM
[10] Karapetyants, A., Rafeiro, H., Samko, S.: Boundedness of the Bergman projection and some properties of Bergman type spaces. Complex Anal. Oper. Theory 13 (2019), 275-289. | DOI | MR | JFM
[11] Karapetyants, A., Samko, S.: Spaces $ BMO_{p(\cdot)}(\Bbb D)$ of a variable exponent $p(z)$. Georgian Math. J. 17 (2010), 529-542. | DOI | MR | JFM
[12] Karapetyants, A., Samko, S.: Mixed norm Bergman-Morrey-type spaces on the unit disc. Math. Notes 100 (2016), 38-48. | DOI | MR | JFM
[13] Karapetyants, A., Samko, S.: Mixed norm variable exponent Bergman space on the unit disc. Complex Var. Elliptic Equ. 61 (2016), 1090-1106. | DOI | MR | JFM
[14] Karapetyants, A., Samko, S.: Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces. Fract. Calc. Appl. Anal. 20 (2017), 1106-1130. | DOI | MR | JFM
[15] Karapetyants, A., Samko, S.: On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half-plane and harmonic functions in half-space. J. Math. Sci., New York 226 (2017), 344-354. | DOI | MR | JFM
[16] Karapetyants, A., Samko, S.: Generalized Hölder spaces of holomorphic functions in domains in the complex plane. Mediterr. J. Math. 15 (2018), Paper No. 226, 17 pages. | DOI | MR | JFM
[17] Karapetyants, A., Samko, S.: On mixed norm Bergman-Orlicz-Morrey spaces. Georgian Math. J. 25 (2018), 271-282. | DOI | MR | JFM
[18] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1. Variable Exponent Lebesgue and Amalgam Spaces. Operator Theory: Advances and Applications 248, Birkhäuser/Springer, Basel (2016). | DOI | MR | JFM
[19] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2. Variable Exponent Hölder, Morrey-Campanato and Grand Spaces. Operator Theory: Advances and Applications 249, Birkhäuser/Springer, Basel (2016). | DOI | MR | JFM
[20] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM
[21] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). | DOI | MR | JFM
Cité par Sources :