Keywords: gradient system; existence and uniqueness of solution; Galerkin method; quadratic form; weakly lower semicontinuity; diffusion equation
@article{10_21136_CMJ_2019_0416_17,
author = {Boussandel, Sahbi},
title = {Existence and uniqueness of solutions for gradient systems without a compactness embedding condition},
journal = {Czechoslovak Mathematical Journal},
pages = {637--651},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2019.0416-17},
mrnumber = {3989271},
zbl = {07088809},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0416-17/}
}
TY - JOUR AU - Boussandel, Sahbi TI - Existence and uniqueness of solutions for gradient systems without a compactness embedding condition JO - Czechoslovak Mathematical Journal PY - 2019 SP - 637 EP - 651 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0416-17/ DO - 10.21136/CMJ.2019.0416-17 LA - en ID - 10_21136_CMJ_2019_0416_17 ER -
%0 Journal Article %A Boussandel, Sahbi %T Existence and uniqueness of solutions for gradient systems without a compactness embedding condition %J Czechoslovak Mathematical Journal %D 2019 %P 637-651 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0416-17/ %R 10.21136/CMJ.2019.0416-17 %G en %F 10_21136_CMJ_2019_0416_17
Boussandel, Sahbi. Existence and uniqueness of solutions for gradient systems without a compactness embedding condition. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 637-651. doi: 10.21136/CMJ.2019.0416-17
[1] Ahmed, N. U., Xiang, X.: Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations. Nonlinear Anal., Theory Methods Appl. 22 (1994), 81-89. | DOI | MR | JFM
[2] Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. 1: Abstract Linear Theory. Monographs in Mathematics 89, Birkhäuser, Basel (1995). | DOI | MR | JFM
[3] Arendt, W., Chill, R.: Global existence for quasilinear diffusion equations in isotropic nondivergence form. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 523-539. | DOI | MR | JFM
[4] W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, U. Groh, H. P. Lotz, F. Neubrander: One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics 1184, Springer, Berlin R. Nagel (1986). | DOI | MR | JFM
[5] Attouch, H., Damlamian, A.: Strong solutions for parabolic variational inequalities. Nonlinear Anal., Theory, Methods Appl. 2 (1978), 329-353. | DOI | MR | JFM
[6] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leyden (1976). | MR | JFM
[7] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems. J. Differ. Equations 250 (2011), 929-948. | DOI | MR | JFM
[8] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies 5, Notas de Matemática (50). North-Holland Publishing, Amsterdam; American Elsevier Publishing, New York (1973), French. | MR | JFM
[9] Chill, R., Fašangová, E.: Gradient Systems. Lecture Notes of the 13th International Internet Seminar, MatfyzPress, Praha (2010).
[10] Fučík, S., Kufner, A.: Nonlinear Differential Equations. Studies in Applied Mechanics 2, Elsevier, Amsterdam (1980). | DOI | MR | JFM
[11] Hestenes, M. R.: Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. Pac. J. Math. 1 (1951), 525-581. | DOI | MR | JFM
[12] Hirano, N.: Nonlinear evolution equations with nonmonotonic perturbations. Nonlinear Anal., Theory Methods Appl. 13 (1989), 599-609. | DOI | MR | JFM
[13] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). | DOI | MR | JFM
[14] Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics 105, American Mathematical Society, Providence (2009). | DOI | MR | JFM
[15] Lieberman, G. M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996). | DOI | MR | JFM
[16] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques, Dunod, Paris (1969), French. | MR | JFM
[17] Littig, S., Voigt, J.: Porous medium equation and fast diffusion equation as gradient systems. Czech. Math. J. 4 (2015), 869-889. | DOI | MR | JFM
[18] Ôtani, M.: On the existence of strong solutions for $\frac{ du}{ dt}(t)+\partial\psi^1(u(t))- \partial\psi^2(u(t))\ni f(t)$. J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 575-605. | MR | JFM
[19] Ôtani, M.: Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems. J. Differ. Equations 46 (1982), 268-289. | DOI | MR | JFM
[20] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer, New York (1983). | DOI | MR | JFM
[21] Roubíček, T.: Nonlinear Partial Differential Equations with Applications. ISNM. International Series of Numerical Mathematics 153, Birkhäuser, Basel (2013). | DOI | MR | JFM
[22] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs 49, American Mathematical Society, Providence (1997). | DOI | MR | JFM
[23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators. Springer, New York (1990). | DOI | MR | JFM
Cité par Sources :