Annihilators of skew derivations with Engel conditions on prime rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 587-603
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^{n}),x^{n}]_{k}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.
DOI :
10.21136/CMJ.2019.0412-18
Classification :
16W20, 16W25
Keywords: prime ring; derivation; skew derivation; automorphism
Keywords: prime ring; derivation; skew derivation; automorphism
@article{10_21136_CMJ_2019_0412_18,
author = {Pehlivan, Taylan and Albas, Emine},
title = {Annihilators of skew derivations with {Engel} conditions on prime rings},
journal = {Czechoslovak Mathematical Journal},
pages = {587--603},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2020},
doi = {10.21136/CMJ.2019.0412-18},
mrnumber = {4111860},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/}
}
TY - JOUR AU - Pehlivan, Taylan AU - Albas, Emine TI - Annihilators of skew derivations with Engel conditions on prime rings JO - Czechoslovak Mathematical Journal PY - 2020 SP - 587 EP - 603 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/ DO - 10.21136/CMJ.2019.0412-18 LA - en ID - 10_21136_CMJ_2019_0412_18 ER -
%0 Journal Article %A Pehlivan, Taylan %A Albas, Emine %T Annihilators of skew derivations with Engel conditions on prime rings %J Czechoslovak Mathematical Journal %D 2020 %P 587-603 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/ %R 10.21136/CMJ.2019.0412-18 %G en %F 10_21136_CMJ_2019_0412_18
Pehlivan, Taylan; Albas, Emine. Annihilators of skew derivations with Engel conditions on prime rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 587-603. doi: 10.21136/CMJ.2019.0412-18
Cité par Sources :