Annihilators of skew derivations with Engel conditions on prime rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 587-603
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^{n}),x^{n}]_{k}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.
Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^{n}),x^{n}]_{k}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.
DOI : 10.21136/CMJ.2019.0412-18
Classification : 16W20, 16W25
Keywords: prime ring; derivation; skew derivation; automorphism
@article{10_21136_CMJ_2019_0412_18,
     author = {Pehlivan, Taylan and Albas, Emine},
     title = {Annihilators of skew derivations with {Engel} conditions on prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {587--603},
     year = {2020},
     volume = {70},
     number = {2},
     doi = {10.21136/CMJ.2019.0412-18},
     mrnumber = {4111860},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/}
}
TY  - JOUR
AU  - Pehlivan, Taylan
AU  - Albas, Emine
TI  - Annihilators of skew derivations with Engel conditions on prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 587
EP  - 603
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/
DO  - 10.21136/CMJ.2019.0412-18
LA  - en
ID  - 10_21136_CMJ_2019_0412_18
ER  - 
%0 Journal Article
%A Pehlivan, Taylan
%A Albas, Emine
%T Annihilators of skew derivations with Engel conditions on prime rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 587-603
%V 70
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/
%R 10.21136/CMJ.2019.0412-18
%G en
%F 10_21136_CMJ_2019_0412_18
Pehlivan, Taylan; Albas, Emine. Annihilators of skew derivations with Engel conditions on prime rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 587-603. doi: 10.21136/CMJ.2019.0412-18

[1] Albaş, E., Argaç, N., Filippis, V. De: Generalized derivations with Engel conditions on one-sided ideals. Commun. Algebra 36 (2008), 2063-2071. | DOI | MR | JFM

[2] Yarbil, N. Baydar, Filippis, V. De: A quadratic differential identity with skew derivations. Commun. Algebra 46 (2018), 205-216. | DOI | MR | JFM

[3] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). | MR | JFM

[4] Chang, J.-C.: On the identity $h(x)=af(x)+g(x)b$. Taiwanese J. Math. 7 (2003), 103-113. | DOI | MR | JFM

[5] Chang, J.-C.: Generalized skew derivations with annihilating Engel conditions. Taiwanese J. Math. 12 (2008), 1641-1650. | DOI | MR | JFM

[6] Chang, J.-C.: Generalized skew derivations with Engel conditions on Lie ideals. Bull. Inst. Math., Acad. Sin. (N.S.) 6 (2011), 305-320. | MR | JFM

[7] Chou, M.-C., Liu, C.-K.: Annihilators of skew derivations with Engel conditions on Lie ideals. Commun. Algebra 44 (2016), 898-911. | DOI | MR | JFM

[8] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms I. J. Algebra 149 (1992), 371-404. | DOI | MR | JFM

[9] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms II. J. Algebra 160 (1993), 130-171. | DOI | MR | JFM

[10] Chuang, C.-L., Chou, M.-C., Liu, C.-K.: Skew derivations with annihilating Engel conditions. Publ. Math. 68 (2006), 161-170. | MR | JFM

[11] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation. J. Algebra 288 (2005), 59-77. | DOI | MR | JFM

[12] Chuang, C.-L., Liu, C.-K.: Extended Jacobson density theorem for rings with skew derivations. Commun. Algebra 35 (2007), 1391-1413. | DOI | MR | JFM

[13] Filippis, V. De: On the annihilator of commutators with derivation in prime rings. Rend. Circ. Math. Palermo, II Ser. 49 (2000), 343-352. | DOI | MR | JFM

[14] Dhara, B., Kar, S., Pradhan, K. G.: An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings. Mat. Vesn. 68 (2016), 164-174. | MR | JFM

[15] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR | JFM

[16] Jacobson, N.: Structure of Rings. American Mathematical Society Colloquium Publications 37, AMS, Providence (1964). | DOI | MR | JFM

[17] Kharchenko, V. K.: Generalized identities with automorphisms. Algebra Logic 14 (1976), 132-148 translation from Algebra Logika 14 1975 215-237. | DOI | MR | JFM

[18] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131, Springer, New York (1991). | DOI | MR | JFM

[19] Lanski, C.: An Engel condition with derivation for left ideals. Proc. Am. Math. Soc. 125 (1997), 339-345. | DOI | MR | JFM

[20] Lanski, C.: Skew derivations and Engel conditions. Commun. Algebra 42 (2014), 139-152. | DOI | MR | JFM

[21] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. | DOI | MR | JFM

[22] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR | JFM

[23] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. | DOI | MR | JFM

[24] Shiue, W.-K.: Annihilators of derivations with Engel conditions on Lie ideals. Rend. Circ. Mat. Palermo (2) 52 (2003), 505-509. | DOI | MR | JFM

[25] Shiue, W.-K.: Annihilators of derivations with Engel conditions on one-sided ideals. Publ. Math. 62 (2003), 237-243. | MR | JFM

Cité par Sources :