Annihilators of skew derivations with Engel conditions on prime rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 587-603.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^{n}),x^{n}]_{k}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.
DOI : 10.21136/CMJ.2019.0412-18
Classification : 16W20, 16W25
Keywords: prime ring; derivation; skew derivation; automorphism
@article{10_21136_CMJ_2019_0412_18,
     author = {Pehlivan, Taylan and Albas, Emine},
     title = {Annihilators of skew derivations with {Engel} conditions on prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {587--603},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2020},
     doi = {10.21136/CMJ.2019.0412-18},
     mrnumber = {4111860},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/}
}
TY  - JOUR
AU  - Pehlivan, Taylan
AU  - Albas, Emine
TI  - Annihilators of skew derivations with Engel conditions on prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 587
EP  - 603
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/
DO  - 10.21136/CMJ.2019.0412-18
LA  - en
ID  - 10_21136_CMJ_2019_0412_18
ER  - 
%0 Journal Article
%A Pehlivan, Taylan
%A Albas, Emine
%T Annihilators of skew derivations with Engel conditions on prime rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 587-603
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/
%R 10.21136/CMJ.2019.0412-18
%G en
%F 10_21136_CMJ_2019_0412_18
Pehlivan, Taylan; Albas, Emine. Annihilators of skew derivations with Engel conditions on prime rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 587-603. doi : 10.21136/CMJ.2019.0412-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0412-18/

Cité par Sources :