Keywords: EP element; partial isometry; normal EP element; strongly EP element; solutions of equation
@article{10_21136_CMJ_2019_0389_18,
author = {Zhao, Ruju and Yao, Hua and Wei, Junchao},
title = {Characterizations of partial isometries and two special kinds of {EP} elements},
journal = {Czechoslovak Mathematical Journal},
pages = {539--551},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0389-18},
mrnumber = {4111858},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0389-18/}
}
TY - JOUR AU - Zhao, Ruju AU - Yao, Hua AU - Wei, Junchao TI - Characterizations of partial isometries and two special kinds of EP elements JO - Czechoslovak Mathematical Journal PY - 2020 SP - 539 EP - 551 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0389-18/ DO - 10.21136/CMJ.2019.0389-18 LA - en ID - 10_21136_CMJ_2019_0389_18 ER -
%0 Journal Article %A Zhao, Ruju %A Yao, Hua %A Wei, Junchao %T Characterizations of partial isometries and two special kinds of EP elements %J Czechoslovak Mathematical Journal %D 2020 %P 539-551 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0389-18/ %R 10.21136/CMJ.2019.0389-18 %G en %F 10_21136_CMJ_2019_0389_18
Zhao, Ruju; Yao, Hua; Wei, Junchao. Characterizations of partial isometries and two special kinds of EP elements. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 539-551. doi: 10.21136/CMJ.2019.0389-18
[1] Baksalary, O. M., Styan, G. P. H., Trenkler, G.: On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra Appl. 430 (2009), 2798-2812. | DOI | MR | JFM
[2] Baksalary, O. M., Trenkler, G.: Characterizations of EP, normal, and Hermitian matrices. Linear Multilinear Algebra 56 (2008), 299-304. | DOI | MR | JFM
[3] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses: Theory and Applications. CMS Books in Mathematics/Ouvrages de Mathèmatiques de la SMC 15, Springer, New York (2003). | DOI | MR | JFM
[4] Chen, W.: On EP elements, normal elements and partial isometries in rings with involution. Electron. J. Linear Algebra 23 (2012), 553-561. | DOI | MR | JFM
[5] Cheng, S., Tian, Y.: Two sets of new characterizations for normal and EP matrices. Linear Algebra Appl. 375 (2003), 181-195. | DOI | MR | JFM
[6] Harte, R., Mbekhta, M.: On generalized inverses in $C^{*}$-algebras. Stud. Math. 103 (1992), 71-77. | DOI | MR | JFM
[7] Hartwig, R. E., Spindelböck, K.: Matrices for which $A^{*}$ and $A^{\dagger}$ commute. Linear Multilinear Algebra 14 (1983), 241-256. | DOI | MR | JFM
[8] Koliha, J. J., Djordjević, D., Cvetković, D.: Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 426 (2007), 371-381. | DOI | MR | JFM
[9] Mosić, D., Djordjević, D. S.: Moore-Penrose-invertible normal and Hermitian elements in rings. Linear Algebra Appl. 431 (2009), 732-745. | DOI | MR | JFM
[10] Mosić, D., Djordjević, D. S.: Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra 18 (2009), 761-772. | DOI | MR | JFM
[11] Mosić, D., Djordjević, D. S.: Further results on partial isometries and EP elements in rings with involution. Math. Comput. Modelling 54 (2011), 460-465. | DOI | MR | JFM
[12] Mosić, D., Djordjević, D. S.: New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218 (2012), 6702-6710. | DOI | MR | JFM
[13] Mosić, D., Djordjević, D. S., Koliha, J. J.: EP elements in rings. Linear Algebra Appl. 431 (2009), 527-535. | DOI | MR | JFM
[14] Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51 (1955), 406-413. | DOI | MR | JFM
[15] Xu, S., Chen, J., Benítez, J.: EP elements in rings with involution. Available at , 18 pages. | arXiv
Cité par Sources :