Characterizations of partial isometries and two special kinds of EP elements
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 539-551.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give some sufficient and necessary conditions for an element in a ring to be an EP element, partial isometry, normal EP element and strongly EP element by using solutions of certain equations.
DOI : 10.21136/CMJ.2019.0389-18
Classification : 15A09, 16U99, 16W10
Keywords: EP element; partial isometry; normal EP element; strongly EP element; solutions of equation
@article{10_21136_CMJ_2019_0389_18,
     author = {Zhao, Ruju and Yao, Hua and Wei, Junchao},
     title = {Characterizations of partial isometries and two special kinds of {EP} elements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {539--551},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2020},
     doi = {10.21136/CMJ.2019.0389-18},
     mrnumber = {4111858},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0389-18/}
}
TY  - JOUR
AU  - Zhao, Ruju
AU  - Yao, Hua
AU  - Wei, Junchao
TI  - Characterizations of partial isometries and two special kinds of EP elements
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 539
EP  - 551
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0389-18/
DO  - 10.21136/CMJ.2019.0389-18
LA  - en
ID  - 10_21136_CMJ_2019_0389_18
ER  - 
%0 Journal Article
%A Zhao, Ruju
%A Yao, Hua
%A Wei, Junchao
%T Characterizations of partial isometries and two special kinds of EP elements
%J Czechoslovak Mathematical Journal
%D 2020
%P 539-551
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0389-18/
%R 10.21136/CMJ.2019.0389-18
%G en
%F 10_21136_CMJ_2019_0389_18
Zhao, Ruju; Yao, Hua; Wei, Junchao. Characterizations of partial isometries and two special kinds of EP elements. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 539-551. doi : 10.21136/CMJ.2019.0389-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0389-18/

Cité par Sources :