One-sided Gorenstein subcategories
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 483-504
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathscr {C}$ of an abelian category $\mathscr {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathscr {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathscr {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathscr {C})$, and prove that any object in $\mathscr {A}$ with finite $r\mathcal {G}(\mathscr {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathscr {A}$ with finite $\mathscr {C}$-projective dimension to an object in $r\mathcal {G}(\mathscr {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathscr {A}$ having enough injectives.
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathscr {C}$ of an abelian category $\mathscr {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathscr {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathscr {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathscr {C})$, and prove that any object in $\mathscr {A}$ with finite $r\mathcal {G}(\mathscr {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathscr {A}$ with finite $\mathscr {C}$-projective dimension to an object in $r\mathcal {G}(\mathscr {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathscr {A}$ having enough injectives.
DOI : 10.21136/CMJ.2019.0385-18
Classification : 16E10, 18G10, 18G25
Keywords: right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
@article{10_21136_CMJ_2019_0385_18,
     author = {Song, Weiling and Zhao, Tiwei and Huang, Zhaoyong},
     title = {One-sided {Gorenstein} subcategories},
     journal = {Czechoslovak Mathematical Journal},
     pages = {483--504},
     year = {2020},
     volume = {70},
     number = {2},
     doi = {10.21136/CMJ.2019.0385-18},
     mrnumber = {4111855},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/}
}
TY  - JOUR
AU  - Song, Weiling
AU  - Zhao, Tiwei
AU  - Huang, Zhaoyong
TI  - One-sided Gorenstein subcategories
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 483
EP  - 504
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/
DO  - 10.21136/CMJ.2019.0385-18
LA  - en
ID  - 10_21136_CMJ_2019_0385_18
ER  - 
%0 Journal Article
%A Song, Weiling
%A Zhao, Tiwei
%A Huang, Zhaoyong
%T One-sided Gorenstein subcategories
%J Czechoslovak Mathematical Journal
%D 2020
%P 483-504
%V 70
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/
%R 10.21136/CMJ.2019.0385-18
%G en
%F 10_21136_CMJ_2019_0385_18
Song, Weiling; Zhao, Tiwei; Huang, Zhaoyong. One-sided Gorenstein subcategories. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 483-504. doi: 10.21136/CMJ.2019.0385-18

[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[2] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969), 146 pages. | DOI | MR | JFM

[3] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. | DOI | MR | JFM

[4] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. | DOI | MR | JFM

[5] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1999). | DOI | MR | JFM

[6] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747, Springer, Berlin (2000). | DOI | MR | JFM

[7] Christensen, L. W., Foxby, H.-B., Holm, H.: Beyond totally reflexive modules and back. A survey on Gorenstein dimensions. Commutative Algebra: Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 101-143. | DOI | MR | JFM

[8] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | JFM

[9] Christensen, L. W., Iyengar, S.: Gorenstein dimension of modules over homomorphisms. J. Pure Appl. Algebra 208 (2007), 177-188. | DOI | MR | JFM

[10] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | JFM

[11] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30, de Gruyter, Berlin (2000). | DOI | MR | JFM

[12] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules. Commun. Algebra 33 (2005), 4705-4717. | DOI | MR | JFM

[13] Enochs, E. E., Oyonarte, L.: Covers, Envelopes and Cotorsion Theories. Nova Science Publishers, New York (2002).

[14] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules. J. Algebra 325 (2011), 132-146. | DOI | MR | JFM

[15] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules. London Mathematical Society Lecture Note Series 282, Cambridge University Press, Cambridge (2000). | DOI | MR | JFM

[16] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM

[17] Huang, Z.: Proper resolutions and Gorenstein categories. J. Algebra 393 (2013), 142-169. | DOI | MR | JFM

[18] Liu, Z., Huang, Z., Xu, A.: Gorenstein projective dimension relative to a semidualizing bimodule. Commun. Algebra 41 (2013), 1-18. | DOI | MR | JFM

[19] Rotman, J. J.: An Introduction to Homological Algebra. Universitext, Springer, New York (2009). | DOI | MR | JFM

[20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. | DOI | MR | JFM

[21] Tang, X., Huang, Z.: Homological aspects of the dual Auslander transpose. Forum Math. 27 (2015), 3717-3743. | DOI | MR | JFM

[22] Tang, X., Huang, Z.: Homological aspects of the adjoint cotranspose. Colloq. Math. 150 (2017), 293-311. | DOI | MR | JFM

Cité par Sources :