One-sided Gorenstein subcategories
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 483-504
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathscr {C}$ of an abelian category $\mathscr {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathscr {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathscr {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathscr {C})$, and prove that any object in $\mathscr {A}$ with finite $r\mathcal {G}(\mathscr {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathscr {A}$ with finite $\mathscr {C}$-projective dimension to an object in $r\mathcal {G}(\mathscr {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathscr {A}$ having enough injectives.
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathscr {C}$ of an abelian category $\mathscr {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathscr {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathscr {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathscr {C})$, and prove that any object in $\mathscr {A}$ with finite $r\mathcal {G}(\mathscr {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathscr {A}$ with finite $\mathscr {C}$-projective dimension to an object in $r\mathcal {G}(\mathscr {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathscr {A}$ having enough injectives.
DOI :
10.21136/CMJ.2019.0385-18
Classification :
16E10, 18G10, 18G25
Keywords: right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
Keywords: right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
@article{10_21136_CMJ_2019_0385_18,
author = {Song, Weiling and Zhao, Tiwei and Huang, Zhaoyong},
title = {One-sided {Gorenstein} subcategories},
journal = {Czechoslovak Mathematical Journal},
pages = {483--504},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0385-18},
mrnumber = {4111855},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/}
}
TY - JOUR AU - Song, Weiling AU - Zhao, Tiwei AU - Huang, Zhaoyong TI - One-sided Gorenstein subcategories JO - Czechoslovak Mathematical Journal PY - 2020 SP - 483 EP - 504 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/ DO - 10.21136/CMJ.2019.0385-18 LA - en ID - 10_21136_CMJ_2019_0385_18 ER -
%0 Journal Article %A Song, Weiling %A Zhao, Tiwei %A Huang, Zhaoyong %T One-sided Gorenstein subcategories %J Czechoslovak Mathematical Journal %D 2020 %P 483-504 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/ %R 10.21136/CMJ.2019.0385-18 %G en %F 10_21136_CMJ_2019_0385_18
Song, Weiling; Zhao, Tiwei; Huang, Zhaoyong. One-sided Gorenstein subcategories. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 483-504. doi: 10.21136/CMJ.2019.0385-18
Cité par Sources :