Keywords: right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
@article{10_21136_CMJ_2019_0385_18,
author = {Song, Weiling and Zhao, Tiwei and Huang, Zhaoyong},
title = {One-sided {Gorenstein} subcategories},
journal = {Czechoslovak Mathematical Journal},
pages = {483--504},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0385-18},
mrnumber = {4111855},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/}
}
TY - JOUR AU - Song, Weiling AU - Zhao, Tiwei AU - Huang, Zhaoyong TI - One-sided Gorenstein subcategories JO - Czechoslovak Mathematical Journal PY - 2020 SP - 483 EP - 504 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/ DO - 10.21136/CMJ.2019.0385-18 LA - en ID - 10_21136_CMJ_2019_0385_18 ER -
%0 Journal Article %A Song, Weiling %A Zhao, Tiwei %A Huang, Zhaoyong %T One-sided Gorenstein subcategories %J Czechoslovak Mathematical Journal %D 2020 %P 483-504 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0385-18/ %R 10.21136/CMJ.2019.0385-18 %G en %F 10_21136_CMJ_2019_0385_18
Song, Weiling; Zhao, Tiwei; Huang, Zhaoyong. One-sided Gorenstein subcategories. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 483-504. doi: 10.21136/CMJ.2019.0385-18
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[2] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969), 146 pages. | DOI | MR | JFM
[3] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. | DOI | MR | JFM
[4] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. | DOI | MR | JFM
[5] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1999). | DOI | MR | JFM
[6] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747, Springer, Berlin (2000). | DOI | MR | JFM
[7] Christensen, L. W., Foxby, H.-B., Holm, H.: Beyond totally reflexive modules and back. A survey on Gorenstein dimensions. Commutative Algebra: Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 101-143. | DOI | MR | JFM
[8] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | JFM
[9] Christensen, L. W., Iyengar, S.: Gorenstein dimension of modules over homomorphisms. J. Pure Appl. Algebra 208 (2007), 177-188. | DOI | MR | JFM
[10] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | JFM
[11] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30, de Gruyter, Berlin (2000). | DOI | MR | JFM
[12] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules. Commun. Algebra 33 (2005), 4705-4717. | DOI | MR | JFM
[13] Enochs, E. E., Oyonarte, L.: Covers, Envelopes and Cotorsion Theories. Nova Science Publishers, New York (2002).
[14] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules. J. Algebra 325 (2011), 132-146. | DOI | MR | JFM
[15] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules. London Mathematical Society Lecture Note Series 282, Cambridge University Press, Cambridge (2000). | DOI | MR | JFM
[16] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM
[17] Huang, Z.: Proper resolutions and Gorenstein categories. J. Algebra 393 (2013), 142-169. | DOI | MR | JFM
[18] Liu, Z., Huang, Z., Xu, A.: Gorenstein projective dimension relative to a semidualizing bimodule. Commun. Algebra 41 (2013), 1-18. | DOI | MR | JFM
[19] Rotman, J. J.: An Introduction to Homological Algebra. Universitext, Springer, New York (2009). | DOI | MR | JFM
[20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. | DOI | MR | JFM
[21] Tang, X., Huang, Z.: Homological aspects of the dual Auslander transpose. Forum Math. 27 (2015), 3717-3743. | DOI | MR | JFM
[22] Tang, X., Huang, Z.: Homological aspects of the adjoint cotranspose. Colloq. Math. 150 (2017), 293-311. | DOI | MR | JFM
Cité par Sources :