Pseudometrics on Ext-semigroups
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 435-451 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map.
This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map.
DOI : 10.21136/CMJ.2019.0352-18
Classification : 22A05, 46L05
Keywords: pseudometric; topological group; extension; Ext-group
@article{10_21136_CMJ_2019_0352_18,
     author = {Wei, Changguo and Zhao, Xiangmei and Liu, Shudong},
     title = {Pseudometrics on {Ext-semigroups}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {435--451},
     year = {2020},
     volume = {70},
     number = {2},
     doi = {10.21136/CMJ.2019.0352-18},
     mrnumber = {4111852},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0352-18/}
}
TY  - JOUR
AU  - Wei, Changguo
AU  - Zhao, Xiangmei
AU  - Liu, Shudong
TI  - Pseudometrics on Ext-semigroups
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 435
EP  - 451
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0352-18/
DO  - 10.21136/CMJ.2019.0352-18
LA  - en
ID  - 10_21136_CMJ_2019_0352_18
ER  - 
%0 Journal Article
%A Wei, Changguo
%A Zhao, Xiangmei
%A Liu, Shudong
%T Pseudometrics on Ext-semigroups
%J Czechoslovak Mathematical Journal
%D 2020
%P 435-451
%V 70
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0352-18/
%R 10.21136/CMJ.2019.0352-18
%G en
%F 10_21136_CMJ_2019_0352_18
Wei, Changguo; Zhao, Xiangmei; Liu, Shudong. Pseudometrics on Ext-semigroups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 435-451. doi: 10.21136/CMJ.2019.0352-18

[1] Arveson, W.: Notes on extensions of $C^*$-algebras. Duke Math. J. 44 (1977), 329-355. | DOI | MR | JFM

[2] Blackadar, B.: $K$-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge (1998). | MR | JFM

[3] Brown, L. G.: The universal coefficient theorem for Ext and quasidiagonality. Operator Algebras and Group Representations, Vol. I Monographs and Studies in Mathematics 17, Pitman, Boston (1984), 60-64. | MR | JFM

[4] Brown, L. G., Douglas, R. G., Fillmore, P. A.: Extensions of $C^*$-algebras, operators with compact self-commutators, and $K$-homology. Bull. Am. Math. Soc. 79 (1973), 973-978. | DOI | MR | JFM

[5] Brown, L. G., Douglas, R. G., Fillmore, P. A.: Extensions of $C^*$-algebras and $K$-homology. Ann. Math. (2) 105 (1977), 265-324. | DOI | MR | JFM

[6] Dadarlat, M.: On the topology of the Kasparov groups and its applications. J. Func. Anal. 228 (2005), 394-418. | DOI | MR | JFM

[7] Elliott, G. A., Kucerovsky, D.: An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem. Pac. J. Math. 198 (2001), 385-409. | DOI | MR | JFM

[8] Kucerovsky, D., Ng, P. W.: The corona factorization property and approximate unitary equivalence. Houston J. Math. 32 (2006), 531-550. | MR | JFM

[9] Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor. Duke Math. J. 55 (1987), 431-474. | DOI | MR | JFM

[10] Salinas, N.: Homotopy invariance of $ Ext(\mathcal A)$. Duke Math. J. 44 (1977), 777-794. | DOI | MR | JFM

[11] Salinas, N.: Quasitriangular extensions of $C^*$-algebras and problems on joint quasitriangularity of operators. J. Oper. Theory 10 (1983), 167-205. | MR | JFM

[12] Salinas, N.: Relative quasidiagonality and $KK$-theory. Houston J. Math. 18 (1992), 97-116. | MR | JFM

[13] Schochet, C. L.: The fine structure of the Kasparov groups I: Continuity of the $KK$-pairing. J. Func. Anal. 186 (2001), 25-61. | DOI | MR | JFM

[14] Schochet, C. L.: The fine structure of the Kasparov groups II: Topologizing the UCT. J. Func. Anal. 194 (2002), 263-287. | DOI | MR | JFM

[15] Schochet, C. L.: The fine structure of the Kasparov groups III: Relative quasidiagonality. J. Oper. Theory 53 (2005), 91-117. | MR | JFM

[16] Wei, C.: Universal coefficient theorems for the stable Ext-groups. J. Funct. Anal. 258 (2010), 650-664. | DOI | MR | JFM

[17] Wei, C.: Classification of extensions of A$\mathbb T$-algebras. Int. J. Math. 22 (2011), 1187-1208. | DOI | MR | JFM

[18] Wei, C.: On the classification of certain unital extensions of $C^*$-algebras. Houston J. Math. 41 (2015), 965-991. | MR | JFM

[19] Wei, C., Liu, S.: On the structure of multiplier algebras. Rocky Mt. J. Math. 47 (2017), 997-1012. | DOI | MR | JFM

[20] Wei, C., Wang, L.: Hereditary $ C^*$-subalgebras and comparison of positive elements. Sci. China, Math. 53 (2010), 1565-1570. | DOI | MR | JFM

[21] Wei, C., Wang, L.: Isomorphism of extensions of $C({\mathbb T}^2)$. Sci. China, Math. 54 (2011), 281-286. | DOI | MR | JFM

[22] Xing, R., Wei, C., Liu, S.: Quotient semigroups and extension semigroups. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 339-350. | DOI | MR | JFM

Cité par Sources :