Keywords: pseudometric; topological group; extension; Ext-group
@article{10_21136_CMJ_2019_0352_18,
author = {Wei, Changguo and Zhao, Xiangmei and Liu, Shudong},
title = {Pseudometrics on {Ext-semigroups}},
journal = {Czechoslovak Mathematical Journal},
pages = {435--451},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0352-18},
mrnumber = {4111852},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0352-18/}
}
TY - JOUR AU - Wei, Changguo AU - Zhao, Xiangmei AU - Liu, Shudong TI - Pseudometrics on Ext-semigroups JO - Czechoslovak Mathematical Journal PY - 2020 SP - 435 EP - 451 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0352-18/ DO - 10.21136/CMJ.2019.0352-18 LA - en ID - 10_21136_CMJ_2019_0352_18 ER -
%0 Journal Article %A Wei, Changguo %A Zhao, Xiangmei %A Liu, Shudong %T Pseudometrics on Ext-semigroups %J Czechoslovak Mathematical Journal %D 2020 %P 435-451 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0352-18/ %R 10.21136/CMJ.2019.0352-18 %G en %F 10_21136_CMJ_2019_0352_18
Wei, Changguo; Zhao, Xiangmei; Liu, Shudong. Pseudometrics on Ext-semigroups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 435-451. doi: 10.21136/CMJ.2019.0352-18
[1] Arveson, W.: Notes on extensions of $C^*$-algebras. Duke Math. J. 44 (1977), 329-355. | DOI | MR | JFM
[2] Blackadar, B.: $K$-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge (1998). | MR | JFM
[3] Brown, L. G.: The universal coefficient theorem for Ext and quasidiagonality. Operator Algebras and Group Representations, Vol. I Monographs and Studies in Mathematics 17, Pitman, Boston (1984), 60-64. | MR | JFM
[4] Brown, L. G., Douglas, R. G., Fillmore, P. A.: Extensions of $C^*$-algebras, operators with compact self-commutators, and $K$-homology. Bull. Am. Math. Soc. 79 (1973), 973-978. | DOI | MR | JFM
[5] Brown, L. G., Douglas, R. G., Fillmore, P. A.: Extensions of $C^*$-algebras and $K$-homology. Ann. Math. (2) 105 (1977), 265-324. | DOI | MR | JFM
[6] Dadarlat, M.: On the topology of the Kasparov groups and its applications. J. Func. Anal. 228 (2005), 394-418. | DOI | MR | JFM
[7] Elliott, G. A., Kucerovsky, D.: An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem. Pac. J. Math. 198 (2001), 385-409. | DOI | MR | JFM
[8] Kucerovsky, D., Ng, P. W.: The corona factorization property and approximate unitary equivalence. Houston J. Math. 32 (2006), 531-550. | MR | JFM
[9] Rosenberg, J., Schochet, C.: The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor. Duke Math. J. 55 (1987), 431-474. | DOI | MR | JFM
[10] Salinas, N.: Homotopy invariance of $ Ext(\mathcal A)$. Duke Math. J. 44 (1977), 777-794. | DOI | MR | JFM
[11] Salinas, N.: Quasitriangular extensions of $C^*$-algebras and problems on joint quasitriangularity of operators. J. Oper. Theory 10 (1983), 167-205. | MR | JFM
[12] Salinas, N.: Relative quasidiagonality and $KK$-theory. Houston J. Math. 18 (1992), 97-116. | MR | JFM
[13] Schochet, C. L.: The fine structure of the Kasparov groups I: Continuity of the $KK$-pairing. J. Func. Anal. 186 (2001), 25-61. | DOI | MR | JFM
[14] Schochet, C. L.: The fine structure of the Kasparov groups II: Topologizing the UCT. J. Func. Anal. 194 (2002), 263-287. | DOI | MR | JFM
[15] Schochet, C. L.: The fine structure of the Kasparov groups III: Relative quasidiagonality. J. Oper. Theory 53 (2005), 91-117. | MR | JFM
[16] Wei, C.: Universal coefficient theorems for the stable Ext-groups. J. Funct. Anal. 258 (2010), 650-664. | DOI | MR | JFM
[17] Wei, C.: Classification of extensions of A$\mathbb T$-algebras. Int. J. Math. 22 (2011), 1187-1208. | DOI | MR | JFM
[18] Wei, C.: On the classification of certain unital extensions of $C^*$-algebras. Houston J. Math. 41 (2015), 965-991. | MR | JFM
[19] Wei, C., Liu, S.: On the structure of multiplier algebras. Rocky Mt. J. Math. 47 (2017), 997-1012. | DOI | MR | JFM
[20] Wei, C., Wang, L.: Hereditary $ C^*$-subalgebras and comparison of positive elements. Sci. China, Math. 53 (2010), 1565-1570. | DOI | MR | JFM
[21] Wei, C., Wang, L.: Isomorphism of extensions of $C({\mathbb T}^2)$. Sci. China, Math. 54 (2011), 281-286. | DOI | MR | JFM
[22] Xing, R., Wei, C., Liu, S.: Quotient semigroups and extension semigroups. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 339-350. | DOI | MR | JFM
Cité par Sources :