Generalized Schröder matrices arising from enumeration of lattice paths
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 411-433
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps $E = (1, 0)$, $ D = (1,1)$, $ N= (0,1)$, and $ D' = (1,2)$ and not going above the line $y=x$. We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities.
DOI :
10.21136/CMJ.2019.0348-18
Classification :
05A15, 05A19, 11B83, 15A24
Keywords: Riordan array; lattice path; Delannoy matrix; Schröder number; Schröder matrix
Keywords: Riordan array; lattice path; Delannoy matrix; Schröder number; Schröder matrix
@article{10_21136_CMJ_2019_0348_18,
author = {Yang, Lin and Yang, Sheng-Liang and He, Tian-Xiao},
title = {Generalized {Schr\"oder} matrices arising from enumeration of lattice paths},
journal = {Czechoslovak Mathematical Journal},
pages = {411--433},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2020},
doi = {10.21136/CMJ.2019.0348-18},
mrnumber = {4111851},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0348-18/}
}
TY - JOUR AU - Yang, Lin AU - Yang, Sheng-Liang AU - He, Tian-Xiao TI - Generalized Schröder matrices arising from enumeration of lattice paths JO - Czechoslovak Mathematical Journal PY - 2020 SP - 411 EP - 433 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0348-18/ DO - 10.21136/CMJ.2019.0348-18 LA - en ID - 10_21136_CMJ_2019_0348_18 ER -
%0 Journal Article %A Yang, Lin %A Yang, Sheng-Liang %A He, Tian-Xiao %T Generalized Schröder matrices arising from enumeration of lattice paths %J Czechoslovak Mathematical Journal %D 2020 %P 411-433 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0348-18/ %R 10.21136/CMJ.2019.0348-18 %G en %F 10_21136_CMJ_2019_0348_18
Yang, Lin; Yang, Sheng-Liang; He, Tian-Xiao. Generalized Schröder matrices arising from enumeration of lattice paths. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 411-433. doi: 10.21136/CMJ.2019.0348-18
Cité par Sources :