Keywords: Riordan array; lattice path; Delannoy matrix; Schröder number; Schröder matrix
@article{10_21136_CMJ_2019_0348_18,
author = {Yang, Lin and Yang, Sheng-Liang and He, Tian-Xiao},
title = {Generalized {Schr\"oder} matrices arising from enumeration of lattice paths},
journal = {Czechoslovak Mathematical Journal},
pages = {411--433},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0348-18},
mrnumber = {4111851},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0348-18/}
}
TY - JOUR AU - Yang, Lin AU - Yang, Sheng-Liang AU - He, Tian-Xiao TI - Generalized Schröder matrices arising from enumeration of lattice paths JO - Czechoslovak Mathematical Journal PY - 2020 SP - 411 EP - 433 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0348-18/ DO - 10.21136/CMJ.2019.0348-18 LA - en ID - 10_21136_CMJ_2019_0348_18 ER -
%0 Journal Article %A Yang, Lin %A Yang, Sheng-Liang %A He, Tian-Xiao %T Generalized Schröder matrices arising from enumeration of lattice paths %J Czechoslovak Mathematical Journal %D 2020 %P 411-433 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0348-18/ %R 10.21136/CMJ.2019.0348-18 %G en %F 10_21136_CMJ_2019_0348_18
Yang, Lin; Yang, Sheng-Liang; He, Tian-Xiao. Generalized Schröder matrices arising from enumeration of lattice paths. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 411-433. doi: 10.21136/CMJ.2019.0348-18
[1] Aigner, M.: Enumeration via ballot numbers. Discrete Math. 308 (2008), 2544-2563. | DOI | MR | JFM
[2] Barry, P.: On the central coefficients of Riordan matrices. J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. | MR | JFM
[3] Bonin, J., Shapiro, L., Simion, R.: Some $q$-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths. J. Stat. Plann. Inference 34 (1993), 35-55. | DOI | MR | JFM
[4] Chen, X., Liang, H., Wang, Y.: Total positivity of Riordan arrays. Eur. J. Comb. 46 (2015), 68-74. | DOI | MR | JFM
[5] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences. Discrete Math. 312 (2012), 2040-2049. | DOI | MR | JFM
[6] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing, Dordrecht (1974). | DOI | MR | JFM
[7] Deutsch, E.: A bijective proof of the equation linking the Schröder numbers, large and small. Discrete Math. 241 (2001), 235-240. | DOI | MR | JFM
[8] Deutsch, E., Munarini, E., Rinaldi, S.: Skew Dyck paths. J. Stat. Plann. Inference 140 (2010), 2191-2203. | DOI | MR | JFM
[9] Dziemiańczuk, M.: Counting lattice paths with four types of steps. Graphs Comb. 30 (2014), 1427-1452. | DOI | MR | JFM
[10] He, T.-X.: Parametric Catalan numbers and Catalan triangles. Linear Algebra Appl. 438 (2013), 1467-1484. | DOI | MR | JFM
[11] Humphreys, K.: A history and a survey of lattice path enumeration. J. Stat. Plann. Inference 140 (2010), 2237-2254. | DOI | MR | JFM
[12] Luzón, A., Merlini, D., Morón, M., Sprugnoli, R.: Identities induced by Riordan arrays. Linear Algebra Appl. 436 (2011), 631-647. | DOI | MR | JFM
[13] Mansour, T., Schork, M., Sun, Y.: Motzkin numbers of higher ranks: Generating function and explicit expression. J. Integer Seq. 10 (2007), Article 07.7.4, 11 pages. | MR | JFM
[14] Merlini, D.: Proper generating trees and their internal path length. Discrete Appl. Math. 156 (2008), 627-646. | DOI | MR | JFM
[15] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays. Can. J. Math. 49 (1997), 301-320. | DOI | MR | JFM
[16] Merlini, D., Sprugnoli, R.: Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. Theor. Comput. Sci. 412 (2011), 2988-3001. | DOI | MR | JFM
[17] Niederhausen, H.: Inverses of Motzkin and Schröder paths. Integers 12 (2012), Article ID A49, 19 pages. | MR | JFM
[18] Nkwanta, A., Shapiro, L. W.: Pell walks and Riordan matrices. Fibonacci Q. 43 (2005), 170-180. | MR | JFM
[19] Pergola, E., Sulanke, R. A.: Schröder triangles, paths, and parallelogram polyominoes. J. Integer Seq. 1 (1998), Article 98.1.7. | MR | JFM
[20] Ramírez, J. L., Sirvent, V. F.: Generalized Schröder matrix and its combinatorial interpretation. Linear Multilinear Algebra 66 (2018), 418-433. | DOI | MR | JFM
[21] Rogers, D. G.: A Schröder triangle: Three combinatorial problems. Combinatorial Mathematics, V Lecture Notes in Mathematics 622, Springer, Berlin (1977), 175-196. | DOI | MR | JFM
[22] Rogers, D. G., Shapiro, L. W.: Some correspondence involving the Schröder numbers and relations. Combinatorial Mathematics Lecture Notes in Mathematics 686, Springer, Berlin (1978). | DOI | MR
[23] Schröder, E.: Vier kombinatorische probleme. Schloemilch Z. (Zs. f. Math. u. Phys.) 15 (1870), 361-376 German \99999JFM99999 02.0108.04.
[24] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group. Discrete Appl. Math. 34 (1991), 229-239. | DOI | MR | JFM
[25] Sloane, N. J. A.: On-line Encyclopedia of Integer Sequences (OEIS). Available at https://oeis.org (2018). | MR
[26] Song, C.: The generalized Schröder theory. Electron. J. Comb. 12 (2005), Article ID 53, 10 pages. | MR | JFM
[27] Sprugnoli, R.: Riordan arrays and combinatorial sums. Discrete Math. 132 (1994), 267-290. | DOI | MR | JFM
[28] Stanley, R. P.: Hipparchus, Plutarch, Schröder, and Hough. Am. Math. Mon. 104 (1997), 344-350. | DOI | MR | JFM
[29] Stanley, R. P.: Enumerative Combinatorics. Volume 2. Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). | DOI | MR | JFM
[30] Sulanke, R. A.: Bijective recurrences concerning Schröder paths. Electron. J. Combin. 5 (1998), Article ID R47, 11 pages. | DOI | MR | JFM
[31] Woan, W.-J.: A relation between restricted and unrestricted weighted Motzkin paths. J. Integer Seq. 9 (2006), Article 06.1.7, 12 pages. | MR | JFM
[32] Yang, S.-L., Dong, Y.-N., He, T.-X.: Some matrix identities on colored Motzkin paths. Discrete Math. 340 (2017), 3081-3091. | DOI | MR | JFM
[33] Yang, S.-L., Dong, Y.-N., Yang, L., Yin, J.: Half of a Riordan array and restricted lattice paths. Linear Algebra Appl. 537 (2018), 1-11. | DOI | MR | JFM
[34] Yang, S.-L., Xu, Y.-X., He, T.-X.: $(m,r)$-central Riordan arrays and their applications. Czech. Math. J. 67 (2017), 919-936. | DOI | MR | JFM
[35] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix. Linear Algebra Appl. 439 (2013), 3605-3614. | DOI | MR | JFM
Cité par Sources :