Keywords: bi-amalgamation; amalgamated algebra; Gaussian ring; Prüfer ring
@article{10_21136_CMJ_2019_0335_18,
author = {Mahdou, Najib and Moutui, Moutu Abdou Salam},
title = {Gaussian and {Pr\"ufer} conditions in bi-amalgamated algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {381--391},
year = {2020},
volume = {70},
number = {2},
doi = {10.21136/CMJ.2019.0335-18},
mrnumber = {4111849},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-18/}
}
TY - JOUR AU - Mahdou, Najib AU - Moutui, Moutu Abdou Salam TI - Gaussian and Prüfer conditions in bi-amalgamated algebras JO - Czechoslovak Mathematical Journal PY - 2020 SP - 381 EP - 391 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-18/ DO - 10.21136/CMJ.2019.0335-18 LA - en ID - 10_21136_CMJ_2019_0335_18 ER -
%0 Journal Article %A Mahdou, Najib %A Moutui, Moutu Abdou Salam %T Gaussian and Prüfer conditions in bi-amalgamated algebras %J Czechoslovak Mathematical Journal %D 2020 %P 381-391 %V 70 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-18/ %R 10.21136/CMJ.2019.0335-18 %G en %F 10_21136_CMJ_2019_0335_18
Mahdou, Najib; Moutui, Moutu Abdou Salam. Gaussian and Prüfer conditions in bi-amalgamated algebras. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 381-391. doi: 10.21136/CMJ.2019.0335-18
[1] Abuhlail, J., Jarrar, M., Kabbaj, S.: Commutative rings in which every finitely generated ideal is quasi-projective. J. Pure Appl. Algebra 215 (2011), 2504-2511. | DOI | MR | JFM
[2] Bakkari, C., Kabbaj, S., Mahdou, N.: Trivial extensions defined by Prüfer conditions. J. Pure Appl. Algebra 214 (2010), 53-60. | DOI | MR | JFM
[3] Bazzoni, S., Glaz, S.: Prüfer rings. Multiplicative Ideal Theory in Commutative Algebra J. W. Brewer et al. Springer, New York (2006), 55-72. | DOI | MR | JFM
[4] Bazzoni, S., Glaz, S.: Gaussian properties of total rings of quotients. J. Algebra 310 (2007), 180-193. | DOI | MR | JFM
[5] Boisen, M. B., Sheldon, P. B.: CPI-extension: Overrings of integral domains with special prime spectrums. Can. J. Math. 29 (1977), 722-737. | DOI | MR | JFM
[6] Butts, H. S., Smith, W.: Prüfer rings. Math. Z. 95 (1967), 196-211. | DOI | MR | JFM
[7] Campanini, F., Finocchiaro, C. A.: Bi-amalgamated constructions. J. Algebra Appl. 18 (2019), Article ID 1950148, 16 pages. | DOI | MR | JFM
[8] Chhiti, M., Jarrar, M., Kabbaj, S., Mahdou, N.: Prüfer conditions in an amalgamated duplication of a ring along an ideal. Commun. Algebra 43 (2015), 249-261. | DOI | MR | JFM
[9] D'Anna, M.: A construction of Gorenstein rings. J. Algebra 306 (2006), 507-519. | DOI | MR | JFM
[10] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and its Applications M. Fontana et al. Walter de Gruyter, Berlin (2009), 155-172. | DOI | MR | JFM
[11] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. | DOI | MR | JFM
[12] D'Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6 (2007), 443-459. | DOI | MR | JFM
[13] Finocchiaro, C. A.: Prüfer-like conditions on an amalgamated algebra along an ideal. Houston J. Math. 40 (2014), 63-79. | MR | JFM
[14] Fuchs, L.: Über die Ideale arithmetischer Ringe. Comment. Math. Helv. 23 (1949), 334-341 German. | DOI | MR | JFM
[15] Glaz, S.: Prüfer conditions in rings with zero-divisors. Arithmetical Properties of Commutative Rings and Monoids S. T. Chapman Lecture Notes in Pure Applied Mathematics 241, Chapman & Hall/CRC, Boca Raton (2005), 272-281. | DOI | MR | JFM
[16] Glaz, S.: The weak global dimensions of Gaussian rings. Proc. Am. Math. Soc. 133 (2005), 2507-2513. | DOI | MR | JFM
[17] Griffin, M.: Prüfer rings with zero divisors. J. Reine Angew. Math. 239-240 (1969), 55-67. | DOI | MR | JFM
[18] Kabbaj, S., Louartiti, K., Tamekkante, M.: Bi-amalgamated algebras along ideals. J. Commut. Algebra 9 (2017), 65-87. | DOI | MR | JFM
[19] Kabbaj, S., Mahdou, N., Moutui, M. A. S.: Bi-amalgamations subject to the arithmetical property. J. Algebra Appl. 16 (2017), Article ID 1750030, 11 pages. | DOI | MR | JFM
[20] Koehler, A.: Rings for which every cyclic module is quasi-projective. Math. Ann. 189 (1970), 311-316. | DOI | MR | JFM
[21] Krull, W.: Beiträge zur Arithmetik kommutativer Integritätsbereiche. Math. Z. 41 (1936), 545-577 German. | DOI | MR | JFM
[22] Loper, K. A., Roitman, M.: The content of a Gaussian polynomial is invertible. Proc. Am. Math. Soc. 133 (2005), 1267-1271. | DOI | MR | JFM
[23] Lucas, T. G.: Gaussian polynomials and invertibility. Proc. Am. Math. Soc. 133 (2005), 1881-1886. | DOI | MR | JFM
[24] Prüfer, H.: Untersuchungen über Teilbarkeitseigenschaften in Körpern. J. Reine Angew. Math. 168 (1932), 1-36 German. | DOI | MR | JFM
[25] Tsang, H.: Gauss's Lemma, Ph.D. Thesis. University of Chicago, Chicago (1965). | MR
Cité par Sources :