Tetravalent half-arc-transitive graphs of order $p^2q^2$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 391-401.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We classify tetravalent $G$-half-arc-transitive graphs $\Gamma $ of order $p^2q^2$, where $G\leq \mathop {\textsf {Aut}}\Gamma $ and $p$, $q$ are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.
DOI : 10.21136/CMJ.2019.0335-17
Classification : 05C25, 20B15
Keywords: half-arc-transitive graph; normal Cayley graph; cube-free order
@article{10_21136_CMJ_2019_0335_17,
     author = {Liu, Hailin and Lou, Bengong and Ling, Bo},
     title = {Tetravalent half-arc-transitive graphs of order $p^2q^2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {391--401},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.21136/CMJ.2019.0335-17},
     mrnumber = {3959952},
     zbl = {07088792},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-17/}
}
TY  - JOUR
AU  - Liu, Hailin
AU  - Lou, Bengong
AU  - Ling, Bo
TI  - Tetravalent half-arc-transitive graphs of order $p^2q^2$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 391
EP  - 401
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-17/
DO  - 10.21136/CMJ.2019.0335-17
LA  - en
ID  - 10_21136_CMJ_2019_0335_17
ER  - 
%0 Journal Article
%A Liu, Hailin
%A Lou, Bengong
%A Ling, Bo
%T Tetravalent half-arc-transitive graphs of order $p^2q^2$
%J Czechoslovak Mathematical Journal
%D 2019
%P 391-401
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-17/
%R 10.21136/CMJ.2019.0335-17
%G en
%F 10_21136_CMJ_2019_0335_17
Liu, Hailin; Lou, Bengong; Ling, Bo. Tetravalent half-arc-transitive graphs of order $p^2q^2$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 391-401. doi : 10.21136/CMJ.2019.0335-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-17/

Cité par Sources :