Tetravalent half-arc-transitive graphs of order $p^2q^2$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 391-401 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We classify tetravalent $G$-half-arc-transitive graphs $\Gamma $ of order $p^2q^2$, where $G\leq \mathop {\textsf {Aut}}\Gamma $ and $p$, $q$ are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.
We classify tetravalent $G$-half-arc-transitive graphs $\Gamma $ of order $p^2q^2$, where $G\leq \mathop {\textsf {Aut}}\Gamma $ and $p$, $q$ are distinct odd primes. This result involves a subclass of tetravalent half-arc-transitive graphs of cube-free order.
DOI : 10.21136/CMJ.2019.0335-17
Classification : 05C25, 20B15
Keywords: half-arc-transitive graph; normal Cayley graph; cube-free order
@article{10_21136_CMJ_2019_0335_17,
     author = {Liu, Hailin and Lou, Bengong and Ling, Bo},
     title = {Tetravalent half-arc-transitive graphs of order $p^2q^2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {391--401},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2019.0335-17},
     mrnumber = {3959952},
     zbl = {07088792},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-17/}
}
TY  - JOUR
AU  - Liu, Hailin
AU  - Lou, Bengong
AU  - Ling, Bo
TI  - Tetravalent half-arc-transitive graphs of order $p^2q^2$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 391
EP  - 401
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-17/
DO  - 10.21136/CMJ.2019.0335-17
LA  - en
ID  - 10_21136_CMJ_2019_0335_17
ER  - 
%0 Journal Article
%A Liu, Hailin
%A Lou, Bengong
%A Ling, Bo
%T Tetravalent half-arc-transitive graphs of order $p^2q^2$
%J Czechoslovak Mathematical Journal
%D 2019
%P 391-401
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0335-17/
%R 10.21136/CMJ.2019.0335-17
%G en
%F 10_21136_CMJ_2019_0335_17
Liu, Hailin; Lou, Bengong; Ling, Bo. Tetravalent half-arc-transitive graphs of order $p^2q^2$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 391-401. doi: 10.21136/CMJ.2019.0335-17

[1] Alspach, B., Xu, M. Y.: 1/2-transitive graphs of order $3p$. J. Algebr. Comb. 3 (1994), 347-355. | DOI | MR | JFM

[2] Bouwer, I. Z.: Vertex and edge transitive, but not 1-transitive, graphs. Can. Math. Bull. 13 (1970), 231-237. | DOI | MR | JFM

[3] Bray, J. N., Holt, D. F., Roney-Dougal, C. M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series 407, Cambridge University Press, Cambridge (2013). | DOI | MR | JFM

[4] Chao, C. Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Amer. Math. Soc. 158 (1971), 247-256. | DOI | MR | JFM

[5] Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Combin. Theory Ser. B 42 (1987), 196-211. | DOI | MR | JFM

[6] Dixon, J. D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics 163 Springer, New York (1996). | DOI | MR | JFM

[7] Du, S. F., Xu, M. Y.: Vertex-primitive 1/2-arc-transitive graphs of smallest order. Commun. Algebra 27 (1999), 163-171. | DOI | MR | JFM

[8] Feng, Y. Q., Kwak, J. H., Wang, X., Zhou, J. X.: Tetravalent half-arc-transitive graphs of order {$2pq$}. J. Algebr. Comb. 33 (2011), 543-553. | DOI | MR | JFM

[9] Feng, Y. Q., Kwak, J. H., Xu, M. Y., Zhou, J. X.: Tetravalent half-arc-transitive graphs of order {$p^4$}. Eur. J. Comb. 29 (2008), 555-567. | DOI | MR | JFM

[10] Godsil, C. D.: On the full automorphism group of a graph. Combinatorica 1 (1981), 243-256. | DOI | MR | JFM

[11] Herzog, M.: On finite simple groups of order divisible by three primes only. J. Algebra 10 (1968), 383-388. | DOI | MR | JFM

[12] Holt, D. F.: A graph which is edge transitive but not arc transitive. J. Graph Theory 5 (1981), 201-204. | DOI | MR | JFM

[13] Hujdurović, A., Kutnar, K., Marušič, D.: Half-arc-transitive group actions with a small number of alternets. J. Comb. Theory, Ser. A 124 (2014), 114-129. | DOI | MR | JFM

[14] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften 134, Springer, Berlin German (1967). | DOI | MR | JFM

[15] Huppert, B., Lempken, W.: Simple groups of order divisible by at most four primes. Izv. Gomel. Gos. Univ. Im. F. Skoriny 16 (2000), 64-75. | JFM

[16] Kutnar, K., Marušič, D., Šparl, P., Wang, R. J., Xu, M. Y.: Classification of half-arc-transitive graphs of order $4p$. Eur. J. Comb. 34 (2013), 1158-1176. | DOI | MR | JFM

[17] Li, C. H.: Semiregular automorphisms of cubic vertex transitive graphs. Proc. Am. Math. Soc. 136 (2008), 1905-1910. | DOI | MR | JFM

[18] Li, C. H., Lu, Z. P., Zhang, H.: Tetravalent edge-transitive Cayley graphs with odd number of vertices. J. Comb. Theory. Ser. B 96 (2006), 164-181. | DOI | MR | JFM

[19] Li, C. H., Sim, H. S.: On half-transitive metacirculant graphs of prime-power order. J. Comb. Theory Ser. B 81 (2001), 45-57. | DOI | MR | JFM

[20] McKay, B. D.: Transitive graphs with fewer than twenty vertices. Math. Comput. 33 (1979), 1101-1121. | DOI | MR | JFM

[21] Pan, J., Liu, Y., Huang, Z., Liu, C.: Tetravalent edge-transitive graphs of order {$p^2q$}. Sci. China Math. 57 (2014), 293-302. | DOI | MR | JFM

[22] Praeger, C. E.: Finite normal edge-transitive Cayley graphs. Bull. Aust. Math. Soc. 60 (1999), 207-220. | DOI | MR | JFM

[23] Suzuki, M.: Group Theory II. Grundlehren der mathematischen Wissenschaften 248, Springer, New York (1986). | MR | JFM

[24] Taylor, D. E., Xu, M. Y.: Vertex-primitive half-transitive graphs. J. Aust. Math. Soc. Ser. A 57 (1994), 113-124. | DOI | MR | JFM

[25] Tutte, W. T.: Connectivity in Graphs. Mathematical Expositions 15, University of Toronto Press, Toronto; Oxford University Press, London (1966). | MR | JFM

[26] Wang, R. J.: Half-transitive graphs of order a product of two distinct primes. Commun. Algebra 22 (1994), 915-927. | DOI | MR | JFM

[27] Wang, X., Feng, Y. Q.: Half-arc-transitive graphs of order {$4p$} of valency twice a prime. Ars Math. Contemp. 3 (2010), 151-163. | DOI | MR | JFM

[28] Wang, X., Feng, Y. Q.: There exists no tetravalent half-arc-transitive graph of order $2p^2$. Discrete Math. 310 (2010), 1721-1724. | DOI | MR | JFM

[29] Wang, Y., Feng, Y. Q.: Half-arc-transitive graphs of prime-cube order of small valencies. Ars Math. Contemp. 13 (2017), 343-353. | DOI | MR | JFM

[30] Wang, X., Feng, Y., Zhou, J., Wang, J., Ma, Q.: Tetravalent half-arc-transitive graphs of order a product of three primes. Discrete Math. 339 (2016), 1566-1573. | DOI | MR | JFM

[31] Wilson, S., Potočnik, P.: A census of edge-transitive tetravalent graphs, Mini-Census. Available at https://www.fmf.uni-lj.si/ {potocnik/work.htm}.

[32] Xu, M. Y.: Half-transitive graphs of prime-cube order. J. Algebr. Comb. 1 (1992), 275-282. | DOI | MR | JFM

Cité par Sources :