On products of some Toeplitz operators on polyanalytic Fock spaces
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 369-379.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The purpose of this paper is to study the Sarason's problem on Fock spaces of polyanalytic functions. Namely, given two polyanalytic symbols $f$ and $g$, we establish a necessary and sufficient condition for the boundedness of some Toeplitz products $ T_{f}T_{\bar g}$ subjected to certain restriction on $f$ and $g$. We also characterize this property in terms of the Berezin transform.
DOI : 10.21136/CMJ.2019.0334-18
Classification : 30G30, 30H20, 46E22, 47B35
Keywords: polyanalytic function; Toeplitz operator; Fock space; Sarason's problem
@article{10_21136_CMJ_2019_0334_18,
     author = {Casseli, Ir\`ene},
     title = {On products of some {Toeplitz} operators on polyanalytic {Fock} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {369--379},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2020},
     doi = {10.21136/CMJ.2019.0334-18},
     mrnumber = {4111848},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0334-18/}
}
TY  - JOUR
AU  - Casseli, Irène
TI  - On products of some Toeplitz operators on polyanalytic Fock spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 369
EP  - 379
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0334-18/
DO  - 10.21136/CMJ.2019.0334-18
LA  - en
ID  - 10_21136_CMJ_2019_0334_18
ER  - 
%0 Journal Article
%A Casseli, Irène
%T On products of some Toeplitz operators on polyanalytic Fock spaces
%J Czechoslovak Mathematical Journal
%D 2020
%P 369-379
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0334-18/
%R 10.21136/CMJ.2019.0334-18
%G en
%F 10_21136_CMJ_2019_0334_18
Casseli, Irène. On products of some Toeplitz operators on polyanalytic Fock spaces. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 369-379. doi : 10.21136/CMJ.2019.0334-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0334-18/

Cité par Sources :