$f$-biminimal maps between Riemannian manifolds
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 893-905
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb {R}^{n}\times \mathbb {S}^{1}(a)$ and derive two rigidity theorems.
We give the definition of $f$-biminimal submanifolds and derive the equation for $f$-biminimal submanifolds. As an application, we give some examples of $f$-biminimal manifolds. Finally, we consider $f$-minimal hypersurfaces in the product space $\mathbb {R}^{n}\times \mathbb {S}^{1}(a)$ and derive two rigidity theorems.
DOI :
10.21136/CMJ.2019.0328-17
Classification :
53B25, 53C40
Keywords: variational vector field; hypersurface; $f$-biminimal submanifold; mean curvature vector
Keywords: variational vector field; hypersurface; $f$-biminimal submanifold; mean curvature vector
@article{10_21136_CMJ_2019_0328_17,
author = {Zhao, Yan and Liu, Ximin},
title = {$f$-biminimal maps between {Riemannian} manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {893--905},
year = {2019},
volume = {69},
number = {4},
doi = {10.21136/CMJ.2019.0328-17},
mrnumber = {4039608},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0328-17/}
}
TY - JOUR AU - Zhao, Yan AU - Liu, Ximin TI - $f$-biminimal maps between Riemannian manifolds JO - Czechoslovak Mathematical Journal PY - 2019 SP - 893 EP - 905 VL - 69 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0328-17/ DO - 10.21136/CMJ.2019.0328-17 LA - en ID - 10_21136_CMJ_2019_0328_17 ER -
Zhao, Yan; Liu, Ximin. $f$-biminimal maps between Riemannian manifolds. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 4, pp. 893-905. doi: 10.21136/CMJ.2019.0328-17
Cité par Sources :