On real flag manifolds with cup-length equal to its dimension
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 299-310
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that for any positive integers $n_1,n_2,\ldots ,n_k$ there exists a real flag manifold $F(1,\ldots ,1,n_1,n_2,\ldots ,n_k)$ with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.
DOI :
10.21136/CMJ.2019.0283-18
Classification :
14M15, 55M30, 57N65
Keywords: cup-length; flag manifold; Lyusternik-Shnirel'man category
Keywords: cup-length; flag manifold; Lyusternik-Shnirel'man category
@article{10_21136_CMJ_2019_0283_18,
author = {Radovanovi\'c, Marko},
title = {On real flag manifolds with cup-length equal to its dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {299--310},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2020},
doi = {10.21136/CMJ.2019.0283-18},
mrnumber = {4111844},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0283-18/}
}
TY - JOUR AU - Radovanović, Marko TI - On real flag manifolds with cup-length equal to its dimension JO - Czechoslovak Mathematical Journal PY - 2020 SP - 299 EP - 310 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0283-18/ DO - 10.21136/CMJ.2019.0283-18 LA - en ID - 10_21136_CMJ_2019_0283_18 ER -
%0 Journal Article %A Radovanović, Marko %T On real flag manifolds with cup-length equal to its dimension %J Czechoslovak Mathematical Journal %D 2020 %P 299-310 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0283-18/ %R 10.21136/CMJ.2019.0283-18 %G en %F 10_21136_CMJ_2019_0283_18
Radovanović, Marko. On real flag manifolds with cup-length equal to its dimension. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 299-310. doi: 10.21136/CMJ.2019.0283-18
Cité par Sources :