On real flag manifolds with cup-length equal to its dimension
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 299-310
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that for any positive integers $n_1,n_2,\ldots ,n_k$ there exists a real flag manifold $F(1,\ldots ,1,n_1,n_2,\ldots ,n_k)$ with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.
We prove that for any positive integers $n_1,n_2,\ldots ,n_k$ there exists a real flag manifold $F(1,\ldots ,1,n_1,n_2,\ldots ,n_k)$ with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.
DOI : 10.21136/CMJ.2019.0283-18
Classification : 14M15, 55M30, 57N65
Keywords: cup-length; flag manifold; Lyusternik-Shnirel'man category
@article{10_21136_CMJ_2019_0283_18,
     author = {Radovanovi\'c, Marko},
     title = {On real flag manifolds with cup-length equal to its dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {299--310},
     year = {2020},
     volume = {70},
     number = {2},
     doi = {10.21136/CMJ.2019.0283-18},
     mrnumber = {4111844},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0283-18/}
}
TY  - JOUR
AU  - Radovanović, Marko
TI  - On real flag manifolds with cup-length equal to its dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 299
EP  - 310
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0283-18/
DO  - 10.21136/CMJ.2019.0283-18
LA  - en
ID  - 10_21136_CMJ_2019_0283_18
ER  - 
%0 Journal Article
%A Radovanović, Marko
%T On real flag manifolds with cup-length equal to its dimension
%J Czechoslovak Mathematical Journal
%D 2020
%P 299-310
%V 70
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2019.0283-18/
%R 10.21136/CMJ.2019.0283-18
%G en
%F 10_21136_CMJ_2019_0283_18
Radovanović, Marko. On real flag manifolds with cup-length equal to its dimension. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 2, pp. 299-310. doi: 10.21136/CMJ.2019.0283-18

[1] Berstein, I.: On the Lusternik-Schnirelmann category of Grassmannians. Math. Proc. Camb. Philos. Soc. 79 (1976), 129-134. | DOI | MR | JFM

[2] Borel, A.: La cohomologie mod 2 de certains espaces homogènes. Comment. Math. Helv. 27 (1953), 165-197 French. | DOI | MR | JFM

[3] Hiller, H. L.: On the cohomology of real Grassmanians. Trans. Am. Math. Soc. 257 (1980), 521-533. | DOI | MR | JFM

[4] Horanská, L'., Korbaš, J.: On cup products in some manifolds. Bull. Belg. Math. Soc. -- Simon Stevin 7 (2000), 21-28. | DOI | MR | JFM

[5] Korbaš, J., Lörinc, J.: The $\mathbb Z_2$-cohomology cup-length of real flag manifolds. Fundam. Math. 178 (2003), 143-158. | DOI | MR | JFM

[6] Petrović, Z. Z., Prvulović, B. I., Radovanović, M.: On maximality of the cup-length of flag manifolds. Acta Math. Hung. 149 (2016), 448-461. | DOI | MR | JFM

[7] Petrović, Z. Z., Prvulović, B. I., Radovanović, M.: Gröbner bases for (partial) flag manifolds. (to appear) in J. Symb. Comput. | DOI | MR

[8] Radovanović, M.: Gröbner bases for some flag manifolds and applications. Math. Slovaca 66 (2016), 1065-1082. | DOI | MR | JFM

[9] Radovanović, M.: On the $\Bbb Z_2$-cohomology cup-length of some real flag manifolds. Filomat 30 (2016), 1577-1590. | DOI | MR | JFM

[10] Stong, R. E.: Cup products in Grassmannians. Topology Appl. 13 (1982), 103-113. | DOI | MR | JFM

Cité par Sources :